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Abstract A task-level control frame-
work is proposed for providing
feedback control in the simulation
of goal-directed human motion. An
operational space approach, adapted
from the field of robotics, is used
for this purpose. This approach is
augmented by a significant new
extension directed at addressing
the control of muscle-driven sys-
tems. Task/posture decomposition
is intrinsically exploited, allowing
human musculoskeletal properties to
direct postural behavior during the
performance of a task. This paper
also describes a simulation architec-
ture for generating musculoskeletal
simulations of human characters. The
evolving capabilities of the collective
environment are directed toward

autonomously generating realistic
motion control for virtual actors
in interactive computer graphics
applications, as well as synthesizing
the control of human-like motion in
robotic systems.

Keywords Human animation · Mus-
culoskeletal dynamics · Robotics ·
Task-level control

1 Introduction

In recent years, there has been an emerging desire to syn-
thetically generate human-like motion in both simulated
and physical settings. In the computer graphics commu-
nity, this desire is directed toward autonomously gener-
ating realistic motion for virtual actors [5, 6, 29]. The in-
tent is to direct these virtual actors using high-level goal-
directed commands for which low-level motion control is
automatically generated.

Motivated by similar desires, the robotics community
seeks a high-level control framework for robotic systems.
With the recent advent of complex humanoid robots [19,
25] this challenge grows more demanding. Consistent
with their anthropomorphic design, humanoid robots are

intended to operate in a human-like manner within man-
made environments and to promote interaction with their
biological counterparts. Common control strategies in-
volve generating joint space trajectories [19] or learning
specific motions [10], but these approaches require exten-
sive motion planning computations and do not generalize
well to related tasks.

The challenge of synthesizing low-level human mo-
tion control from high-level commands can be addressed
by integrating approaches from the biomechanics and
robotics communities. The biomechanics community has
investigated the phenomenon of neuromuscular dynam-
ics and control through the use of computational muscle
models [3, 4, 31]. This characterization allows us to de-
scribe muscle strength limitations, activation delays, and
overall muscle contraction dynamics. Properly accounting
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for these characteristics is critical to authentically simulat-
ing human motion since all human motion is rooted in, and
bounded by, physiological capabilities. In a complemen-
tary manner, the robotics community has investigated the
task-level feedback control of robots using the operational
space approach [12, 13, 15]. This approach recasts the dy-
namics of the robotic system into a relevant task space
description. This provides a natural mechanism for speci-
fying high-level motion commands that can be executed in
real-time using feedback control.

While the use of computational musculoskeletal models
and the task-level control of robots have been researched
in the past, the integration of these approaches into a uni-
fied framework offers a promising methodology for syn-
thesizing goal-directed human-like motion control. Recent
work [15] addresses multi-objective task-level control of
humanoid systems. However, the authors do no not ad-
dress the biomechanical factors that influence human
motion control. Such factors, like musculoskeletal dynam-
ics, form an important part of emulating human motion in
a synthetic environment.

This paper focuses on the biomechanical aspects of
human motion in order to provide a physiological frame-
work for simulating human motion. We present a control
architecture that integrates elements of biomechanical and
robotic approaches. This control architecture extends the
operational space approach by addressing the control of
muscle-driven systems. This extension complements other
work done in operational space control of humanoid sys-
tems [15] that addresses multiple task objectives but not
the physiological basis for motion.

In addition to the new control framework, this paper
presents a simulation architecture for the task-level control
of human-like motion. This consists of a simulation im-
plementation that generates feed-forward musculoskeletal
simulations of human-like characters. This is built upon
a core environment that has already been developed for the
physics-based simulation of robotic systems. The evolving
capabilities of the overall environment are facilitated by an
object-oriented design, which provides a natural mechan-
ism for connecting the musculoskeletal plant to task-level
controllers. The environment offers real-time simulation
functionality, allowing the user to control and interact with
many degree-of-freedom muscle-driven models in a task-
level setting.

2 Previous work

The operational space framework [12, 13] provides the
point of departure for the task-level control approach that
will be addressed in this paper. This framework provides
a natural vocabulary for studying human motion control.
It does so by providing dynamic models at the task level
and structures for decoupled task and posture control. This

allows for posture objectives to be controlled without dy-
namically interfering with the primary task(s). More re-
cently a multi-objective formulation has been proposed for
the control of humanoid systems [15]. The efficacy of the
operational space framework has been demonstrated for
robotic systems; however, to date, it has only had limited
application for biomechanical systems [27]. Specifically,
past work in formulating operational space control, in-
cluding the multi-objective formulation [15], makes no
accommodation for muscle-driven control. This paper ex-
tends the application of the operational space approach to
biomechanical simulations.

Several tools have emerged in the biomechanics com-
munity for studying the dynamics and neuromuscular con-
trol of movement. Many biomechanics labs have made use
of SIMM (Software for Integrated Musculoskeletal Mod-
eling) [4], a modeling environment for defining skeletal
topology, muscle geometry, and joint kinematics. When
used in conjunction with SD-FAST (Symbolic Dynam-
ics) [9] to generate the multi-body equations of motion for
the skeletal system, the user can simulate the feed-forward
dynamic response of the musculoskeletal system to neural
inputs. There are no native control capabilities in SIMM,
so users must specify the control via open-loop using their
own feed-forward optimization routine [22] or via closed-
loop using their own feedback control routine [28]. In
addition to SIMM, there have been several other mus-
culoskeletal simulation systems described in the litera-
ture [8, 17, 18, 23].

3 Musculoskeletal model

The musculoskeletal model presented here involves a de-
scription of the skeletal system as a rigid multi-body sys-
tem spanned by a set of musculotendon actuators. The
musculotendon actuator model consists of a standard two-
state Hill-type model [26, 30]. A stiff tendon simplifica-
tion of the two-state model will also be presented.

While this musculoskeletal model has been broadly
used, Sect. 5 describes a unique integration of this model
into a task-level control framework. This involves encod-
ing musculoskeletal parameters into a postural field to fa-
cilitate control.

3.1 Skeletal dynamics

The skeletal system is modeled as a system of constrained
rigid bodies whose configuration is described by a set of
generalized coordinates, q. These generalized coordinates
are usually taken to be the joint angles between limb seg-
ments but may also involve other displacement parame-
ters. The n equations of motion can thus be represented in
standard form as

Γ =A(q) q̈+b(q, q̇)+g(q), (1)
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where Γ is the set of joint torques, A(q) is the system
mass matrix, b(q, q̇) is the vector of centrifugal and Cori-
olis terms, and g(q) is the vector of gravity terms. For
conciseness, we will often refrain from explicitly denoting
the functional dependence of these quantities on q and q̇.
This practice will also be employed with other quantities
throughout the paper.

3.2 Muscle kinematics

Having defined a dynamical model of the skeletal system,
we may now assign a system of musculotendon actuators
to it. For the purposes of this model, we will assume that
all musculotendon lengths, l, can be uniquely determined
from the system configuration, q. That is, l = l(q). As
a consequence of this assumption, differential variations in
l are given by

δl=L(q) δq, (2)

where L(q) is the muscle Jacobian. From the principle of
virtual work, we conclude that

Γ = −LTf T , (3)

where f T is the vector of net muscle forces (active and
passive components). The negative sign is due to the con-
vention of taking contractile muscle forces as positive.

3.3 Neuromuscular dynamics

Neuromuscular dynamics refers to the time-evolution of
muscle states (length and force) in response to neural ex-
citation (control input) [11, 21]. This net dynamic effect
can be divided into activation dynamics and musculoten-
don contraction dynamics. A Hill-type active state model
[26, 30] has been used to model these effects.

3.3.1 Activation dynamics

Activation dynamics refers to the process of muscle acti-
vation in response to neural excitation. This process can
be modeled by the following equation of state written in
terms of the activation, a:

ȧ = u −a

τ(u, a)
, (4)

where u ∈ [0, 1] is the neural input. The term τ(u, a) is
a time constant given by

τ(u, a) =
{
(τa − τd)u + τd for u � a
τd for u < a

, (5)

where τa and τd are the activation and deactivation time
constants, respectively.

3.3.2 Contraction dynamics

Musculotendon contraction dynamics refers to the process
of force generation in the muscle based on muscle con-
traction, rate of contraction, and activation. A number of
different active state models exist. One such model is for-
mulated with muscle length, lM , as the state [26, 30]. Fig-
ure 1 depicts the configuration of forces in this model. In
addition to an active element, there is a passive viscoelas-
tic element (in parallel) and an elastic tendon element
(in series). The relative angle associated with the muscle
fibers, α, is referred to as the pennation angle.

Based on the geometry of Fig. 1, we have the following
relationships:

l(q) = lM cos α+ lT

l̇(q, q̇) = l̇M cos α+ l̇T (6)

and the following force equilibrium equation:

fT = ( f A + f P) cosα. (7)

Using this force equilibrium equation in conjunction with
constitutive relationships (Fig. 2) we can express an equa-
tion of state in the following functional form:

l̇M = l̇M(l(q), l̇(q, q̇), lM, a). (8)

For a system of r musculotendon actuators, we can
express the following system of 2r first-order state equa-

Fig. 1. Active state musculotendon model. The active contractile
element and passive viscoelastic element are in parallel. The pas-
sive elastic tendon element is in series
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Fig. 2. Force-length-velocity relationship showing muscle force,
f̂M , as a function of muscle length, l̂M , and rate of contraction,̂̇lM
(all quantities are normalized)

tions:

ȧ=



1/τ1 0
. . .

0 1/τr







u1 −a1
...

ur −ar


 , (9)

and

l̇M = l̇M(l(q), l̇(q, q̇), lM,a) (10)

3.4 Musculoskeletal dynamics

Combining neuromuscular dynamics with multi-body
skeletal dynamics allows us to model the overall muscu-
loskeletal system. Given a set of neural inputs, u, a set

Fig. 3. Musculoskeletal system (feed-forward path). Neural excitations provide input to the activation dynamics. Output of the activation
dynamics provides input to the contraction dynamics. Output of the contraction dynamics provides input to the skeletal dynamics through
the joint torques

of muscle activations, a, arise as dictated by the activa-
tion dynamics. Based on these activations, as well as the
skeletal configuration, q and q̇, a set of muscle forces,
f T , arises. These muscle forces are related to the joint
torques, Γ , through the muscle Jacobian, L. The skele-
tal dynamics are driven by these joint torques, resulting in
motion of the system. This overall process is described by
the feed-forward path of Fig. 3. This path, however, does
not address the feedback mechanisms used by the central
nervous system to arrive at appropriate compensation for
controlling the musculoskeletal plant.

3.4.1 Stiff tendon model

If we make the assumption that the tendon is infinitely
stiff, lM is no longer an independent state, but rather,
it is algebraically related to the overall musculotendon
length, l(q). This provides a useful simplification to the
full musculoskeletal dynamics described in the previ-
ous sections. If we define the muscle saturation force,
fS(q, q̇) � f A(q, q̇, 1), we can then define the muscle
force-activation gain, K f , as the magnitude of force gen-
eration in the muscle per change in unit activation. Thus,

K f �
∂ fT

∂a
= fS cos α. (11)

For a system of muscles, the muscle force-activation gain
matrix is then

K f =



fS1 cos α1 0
. . .

0 fSr cos αr


 , (12)

and the muscle forces can now be expressed in terms of
this gain:

f T (q, q̇,a) = f P(q, q̇)+K f (q, q̇)a, (13)
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where

f P = (
f P1 cos α1 · · · f Pr cos αr

)T
. (14)

As with the musculotendon forces, it is useful to ex-
press our generalized forces using a gain relationship. To
this end, we will define the muscle torque-activation gain
matrix,

KΓ �−LTK f . (15)

The generalized forces can now be expressed in terms of
this gain,

Γ (q, q̇,a) = Γ P(q, q̇)+KΓ (q, q̇)a, (16)

where

Γ P = −LTf P. (17)

The overall musculoskeletal dynamics can then be ex-
pressed as

Γ (q, q̇,a) =A(q) q̈+b(q, q̇)+g(q). (18)

4 Task-level control framework

Within the context of our control framework, a task is any
formal description of desired activity that can explicitly
be represented as a function of the generalized coordi-
nates. This could be as simple as specifying the position
of a limb to be in a certain location. Multiple tasks can be
combined into a single task definition, as long as they are
kinematically consistent with each other. The task coordi-
nates will be denoted by x = x(q). The Jacobian,J(q), of
the task is defined as

Jij �
∂xi

∂qj
(19)

Defining the dynamically consistent inverse of the Ja-
cobian as [12] [13]

J̄ �A−1JT (JA−1JT )−1, (20)

we can map the configuration space description of the
skeletal dynamics (Eq. 1) into an operational space de-
scription:

J̄
T (
Aq̈+b+g = Γ )

⇓
Λ(q) ẍ+µ(q, q̇)+p(q) = f

. (21)

This process provides us a description of the dynamics
in task coordinates rather than generalized coordinates

(while generalized coordinates are still present in Eq. 21,
the inertial term involves task space accelerations rather
than generalized accelerations). This is useful for control
applications, since we can frame our control problem in
terms of the relevant task coordinates, x, that we wish to
control using a relevant operational space force, f . The
terms in Eq. 21 are defined as the operational space mass
matrix,

Λ(q)�
(
JA−1J T )−1

, (22)

the operational space centrifugal-Coriolis vector,

µ(q, q̇)� J̄ T
b−ΛJ̇q̇, (23)

and the operational space gravity vector,

p(q)� J̄T
g. (24)

We will always take the dimension of the task to be less
than or equal to the dimension of the configuration space.
In the specific case that the dimension of the task is strictly
less than the dimension of the configuration space, we re-
fer to the system as redundant with respect to the task (see
Fig. 4). In this case, the operational space dynamics do not
fully describe the system behavior, and f does not fully
describe the system control. However, the null space of the
task is associated with a complementary posture space of
motion that does not interfere with the task [13]. This pos-
ture space may be utilized to satisfy other criteria through
the following decomposition of the control torques:

Γ = Γ task +Γ posture = JT f + (
I−JT J̄

T )
Γ o. (25)

Fig. 4. A task description illustrating two corresponding task-
consistent postures. Redundancy with respect to task introduces
task dynamics as well as posture dynamics (simulation sequence
created by L. Sentis)
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A more concise expression of this is

Γ task +Γ posture = JT f +N TΓ o, (26)

where

N T � I−J T J̄
T
. (27)

Khatib et al. [15] considered a multi-objective formu-
lation of operational space control, allowing for a hierar-
chy of separate tasks that may conflict with each other.
This multi-objective approach will not be used for the ex-
position presented throughout the rest of this paper. The
basic formulation summarized above will suffice, given an
assumption of non-conflicting tasks.

5 Task-level musculoskeletal control

We now wish to apply a task/posture control decompos-
ition to our musculoskeletal system. This entails choos-
ing physiologically characteristic task and posture control
structures that model certain aspects of the motion con-
trol behavior of the central nervous system. Because we
are choosing feedback control structures, the system can
be designed to behave in a robust manner in the presence
of disturbances. This is important for real-time interaction
with a physics-based simulation or a physical system. In
the absence of such feedback mechanisms, feed-forward
optimization approaches like dynamic optimization would
be required. Such approaches have the drawback of being
computationally costly, thereby precluding real-time exe-
cution. Additionally, due to the open-loop nature of the
controls they generate, the behavior of the system is not
robust in the presence of disturbances and external user
interactions.

5.1 Task control

We will begin our task/posture control synthesis by choos-
ing a task control structure. This entails designing a con-
trol response, f . An artificial potential field, Ut(x), de-
scribed in task coordinates, serves as a straightforward
control primitive. For example

Ut(x)� 1

2
(x− xo)

TKx(x− xo) (28)

can be used as a simple quadratic potential field, relative to
a goal location, xo. Seeking to minimize this potential, we
generate the following control force:

f � = −∇Ut = −Kx(x− xo). (29)

Adding a damping term, we have

f � = −Kx(x− xo)−Kv ẋ (30)

as the control input of the decoupled system. The gain
matrices,Kx andKv, can be chosen to reflect physiolog-
ical properties, such as natural limb endpoint impedances.
Using estimates (denoted by ·̂) of the operational space
dynamic properties, we have the following dynamic com-
pensation expression:

f = Λ̂ f � + µ̂+ p̂. (31)

This expression will be complemented by a posture ex-
pression, to be developed in the following section.

5.2 Posture control

We will complete our task/posture control synthesis by
choosing a posture control structure. This entails design-
ing a control input, Γ p, to serve as the null space term,
Γ o, in Eq. 26. A potential field, Up(q), can be chosen to
represent any of a number of different physiological mea-
sures. Specifically, where these measures relate to muscu-
loskeletal properties, we will refer them as muscular effort
measures. Our control then seeks to minimize Up while
satisfying the task.

The expression for Up(q) proposed the gravity
terms [16] involves muscle strength capacities projected at
the joint level and is given by

Up(q) =
r∑

i=1

wi

(
gi(q)

ΓBi (q)

)2

, (32)

where, depending on the sign of the gravity terms gi , the
term ΓBi is either the upper or lower muscle induced
torque boundary about a joint i . These terms are computed
using the stiff tendon musculoskeletal model described in
Sect. 3.4.1. The wi terms are weighting terms.

The physiological rationale for this measure was dis-
cussed in [16] and will only be briefly described here. In
this study, a number of motion-capture experiments were
performed on human subjects. The experimental postures
associated with a given reaching task were compared with
other postures in the kinematic null space of the task. The
set of these postures comprise the self-motion manifold
associated with a fixed task point, x(q) = xo. This set is
given by M(xo)� {q|x(q) = xo}. In [16], good correlation
was observed between the experimental postures and the
postures that minimized the effort measure of Eq. 32.

It is noted that by projecting muscle strength capaci-
ties to the joint level in a decoupled manner, as is done
in Eq. 32, the cross-joint coupling associated with multi-
articular muscles (muscles that span more than one joint)
is ignored. Consequently, in this paper we propose an en-
hanced and more general muscle effort measure to that
which was proposed in [16]. This measure is given by

Up(q) = g(q)T (
KΓK

T
Γ

)−1
g(q), (33)
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whereKΓ is the muscle torque-activation gain matrix de-
fined in Eq. 15.

Using the measure of Eq. 33, experimental studies
were performed and analyzed. Motion capture experi-
ments were performed on five subjects who were in-
structed to move different weights to various target loca-
tions. Figure 5 depicts the results of a particular subject
trial. The effort associated with the subject’s nominal con-
figuration, qo, at the target can be compared with the effort
associated with other configurations in a subset of the self-
motion manifold, q = [q1, q2], of the target.

Not all trials show as precise a correlation between the
subject’s nominal configuration and the minimum of the
muscle effort curve, as can be seen in the trial of Fig. 5.
However, for most trials, the minimum of the effort curve

Fig. 5. Variation of muscle effort (Eq. 33) over the self-motion
manifold for a given hand target location. The horizontal axis rep-
resents variation from the subject’s nominal configuration, qo, in
degrees along the self-motion manifold. For most trials, the mini-
mum of the effort curve is typically within several degrees of the
subject’s nominal configuration

is typically within several degrees of the subject’s nominal
configuration. More experiments are planned; neverthe-
less, the results are promising in that they suggest good
correlation between muscle effort minimization and sub-
ject motion. The reader may refer to the work of Khatib
et al. [16] for a more extensive discussion of experimental
validation with human subjects.

In the work presented by Khatib et al. [16], the ap-
proach employed with the muscle effort measure (Eq. 32)
was effectively a kinematic one. While a prioritized task-
level control framework is summarized, the authors do not
explicitly integrate the musculoskeletal model into the dy-
namics and control setting. Further, the analysis done by
Khatib et al. [16] is purely kinematic. By contrast, we wish
to apply an effort-minimization approach to the control,
where we seek to minimize the muscle effort potential in
a task-consistent manner. To do this, we generate the fol-
lowing posture control torque:

Γ p = −∇Up. (34)

Adding a damping term and gains, we have

Γ p = −Kp ∇Up − Kd q̇. (35)

5.3 Unified musculoskeletal task/posture control

With the individual task and posture control structures
defined, we can implement the overall feedback control
structure. In summary, our control torque is given by

Γ = JT f +N TΓ p, (36)

where the operational space compensation is

f = Λ̂ f � + µ̂+ p̂, (37)

and the control input of the decoupled system is

f � = −Kx(x− xo)−Kv ẋ. (38)

Finally, the posture term is

Γ p = −Kp ∇Up − Kd q̇, (39)

where Up is the muscle effort measure given by Eq. 32,
Eq. 33, or some other muscle-based potential. Figure 6
depicts a block diagram of the task-level neuromuscular
controller described by Eqs. 36 through 39.

Figure 7 depicts responses associated with the task-
level neuromuscular controller of Fig. 6. In this illustrative
example, a muscle-driven redundant chain is controlled
to move to a target. In one case, the distal muscles are
stronger than the proximal muscles. In the other case, the
proximal muscles are stronger than the distal muscles.
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Fig. 6. Task-level feedback control employing a neuromuscular criterion for posture control. The task servo block represents a control
law in task coordinates. This can be defined as the gradient of a task potential field plus a damping term (Eq. 38). Estimates of the op-
erational space dynamic parameters, Λ, µ, and p are used to provide the appropriate dynamic compensation, f (Eq. 37). The posture
control emerges in a task-consistent manner, where the posture servo block represents a neuromuscular-based control law. This can be
defined as the gradient of a muscle effort potential plus a damping term (Eq. 39). The sum of the task and posture terms is applied to the
skeletal plant as a control input, Γ (Eq. 36)

Fig. 7. A muscle-driven redundant chain controlled by the system of Fig. 6. The case where the distal muscles are stronger than the prox-
imal ones is illustrated in (a). The controller drives the musculoskeletal plant to the target (task) from to to t f in a manner that minimizes
the effort (Kx = 100, Kv = 20, Kp = .3, Kd = 3). The case where the proximal muscles are stronger than the distal ones is illustrated in
(b). Again, the controller drives the musculoskeletal plant to the target in a manner that minimizes the effort (Kx = 100, Kv = 20, Kp = .4,
Kd = 4)
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Different behaviors autonomously emerge from the con-
troller based on these different physiological conditions.

The tight integration of our musculoskeletal model and
task-level control framework is unique in that it poses the
control objective for the musculoskeletal plant in terms
of a concise set of task coordinates rather than the much
larger set of generalized coordinates. Additionally, while
the musculoskeletal plant can be driven by individual neu-
ral excitations, as is conventionally done, its integration
with the task-level control framework allows it to be con-
trolled through a unique task/posture decomposition. In
this way, the posture controller encodes the properties of
the musculoskeletal plant in an efficient manner, using
a potential, without the need for specifying a large set of
control inputs (neural excitations).

This approach also offers advantages over other ap-
proaches. For example, a standard approach like dynamic
optimization exhibits a significant computational burden,
since a large input space of neural excitations must be
searched to drive the musculoskeletal plant over a fixed
time interval. Additionally, the control is inherently open-
loop as the feed-forward path of the musculoskeletal plant
is repeatedly cycled in order to generate the control inputs.
This prohibits the simulation from being interactive and
responding in a robust manner to disturbances.

6 Simulation architecture

A simulation environment has been developed for simu-
lating musculoskeletal dynamics and task-level control.
This has been built upon a simulation and active interfaces
framework (SAI), which is comprised of a set of libraries
developed to perform interactive simulation of complex
robotic systems [14].

6.1 Core simulation environment

At the core of SAI is a multi-body dynamics engine for
simulating kinematic chains. Additionally, collisions and
contact between objects are simulated. A haptics inter-
face library allows for interaction with the system using
a force-feedback device. Outside of the core dynamics and
interaction capabilities, most of an SAI’s infrastructure is
devoted to algorithms for task-level planning and control.

The multi-body dynamics component of SAI focuses
on recursive algorithms [1, 7, 20] for computing the dy-
namics and control of n-joint branching, redundant robotic
mechanisms with m operational degrees of freedom.
The complexity of these algorithms scales according to
O(nm +m3) as compared to O(n3 +m3) for many exist-
ing symbolic algorithms. Typically, m is small compared
to n, which implies near-linear scaling, O(n). A much
more detailed description of the multi-body dynamics al-
gorithms used in SAI is given [1].

The collision-handling capabilities of SAI implement
an impulse-based approach for modeling rigid contact and
collision. Objects in the simulated world are modeled as
the union of convex polyhedra. A contact space is defined
to describe the contact state between any two polyhedra
with a finite number of contact points. When a contact or
collision occurs, a Jacobian and operational space mass
matrix, defined with respect to the contact space, are com-
puted. In this approach, only the true degrees of freedom
of the multi-body system are modeled, providing added
efficiency by eliminating the internal constraints of the
system. The collision model employs a standard coeffi-
cient of restitution relation as the constraint on velocities
before and after collision. A much more detailed descrip-
tion of the collision approach used in SAI, as well as its
benefits over standard approaches, is given in [24].

While collision capability is useful in the general ap-
plication of physics-based simulation, we have not specif-
ically exploited it in our task-level musculoskeletal con-
trol approach. As a result, we have only provided a brief
summary of this core simulation capability and have not
discussed it within the specific context of task-level mus-
culoskeletal control. Future applications of our muscu-
loskeletal control approach may exploit the collision and
contact capabilities of SAI. These capabilities would be
particularly relevant for gait and contact-force controllers,
both of which would require force-sensing information in
the feedback loop. Figure 8 depicts simulations in an SAI
illustrating its handling of multi-body dynamics as well as
collision.

6.2 Musculoskeletal simulation environment

The core SAI environment has been extended to incorpo-
rate the simulation of muscle-driven systems. Characters
can be specified with a set of musculotendon actuators,
modeled as described in Sect. 3. The environment allows
feed-forward operation, in which control inputs are sent
to each of the muscles, as well as an implementation of
the task-level control methodology of Sect. 5. The object-
oriented design employed provides a natural mechanism
for connecting the musculoskeletal plant to task-level con-
trollers. Appendix A provides a detailed description of the
class design.

The addition of muscle simulation capabilities to SAI
is illustrated in Fig. 9, which depicts a sequence from
a task-level control simulation. The model shown in the
sequence consists of 30 joints and 144 muscles. Muscu-
loskeletal data used in this model has been derived from
SIMM models [4]. The hands are defined as task-control
points that can be moved interactively by the user. A bal-
ancing task constraint is imposed as well.

Because the control of the human characters in these
simulations is robust and executed in real-time (or near
real-time), the user can interact with the simulation and
apply external disturbances to the characters. Figure 10



V. De Sapio et al.

Fig. 8. Sequences illustrating core simulation capabilities of SAIs. Virtual acrobats interacting in a dynamic environment subject to real-
istic physical constraints (a). This SAI simulation sequence illustrates real-time multi-body dynamics and collision response (simulation
sequence created by F. Conti). Interaction with a virtual skeleton in an SAI (b). The skeleton is commanded to sit on the block. The user
then pulls on the block with a virtual force, causing the skeleton to summersault (simulation sequence created by V. De Sapio)

shows an example of disturbance forces interactively ap-
plied by the user. The character’s controller applies com-
pensation in response to the disturbance, resulting in sta-
ble behavior of the character’s dynamics.

7 Conclusion and future work

We have presented a framework for the task-level con-
trol of muscle-driven human motion. This framework in-
tegrates a musculoskeletal model and a task-level control
approach, allowing the control objective for the muscu-
loskeletal plant to be stated in terms of a natural set of
task coordinates. The unique task/posture decomposition
implements a posture controller, which efficiently encodes
musculoskeletal properties into a posture potential. The

feedback nature of this framework inherently provides sta-
ble response to disturbances and external interactions, as
opposed to feed-forward approaches like dynamic opti-
mization.

A simulation environment that implements our task-
level musculoskeletal control framework has also been
presented. This environment is built upon an efficient
multi-body dynamics engine. The overall environment
provides a user-friendly interface for producing physically
realistic task-driven human-like motions. We believe that
such a system is useful in the study and synthesis of
human-like motion for computer graphics applications as
well as the synthesis of human-like motion control for an-
thropomorphic robotic systems.

The current focus of our work has been on whole-body
postural control rather than walking. There are gait con-
trollers currently being tested for future use. Regarding
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Fig. 9. Task-level control of
a simulated human in a dynamic
setting. While the environment
allows feed-forward operation
in which control inputs are sent
to each of the 144 muscles,
a more efficient task-level con-
trol is used in this interactive
sequence. Users can interac-
tively move the control points,
defined at the wrists, while the
simulated human responds

Fig. 10. Response of a human character to disturbance
forces (vectors) interactively applied by the user. The
feedback controller applies compensation resulting in
stable behavior of the system and a return to equilib-
rium. This is not possible with feed-forward simulation
approaches that generate open-loop controls

the muscle models, while the current system simulates full
muscle dynamics in the feed-forward path, a stiff tendon
muscle model is employed for control purposes. This sim-
plifies the control problem but neglects some important
dynamical properties of muscle. Plans for improvement
of the system include the implementation of other mus-
cle control routines. This will include an operational space
version of the computed muscle control method [28]. Such
an approach involves performing a task-constrained min-
imization of muscular effort defined in terms of mus-
cle activations. The conceptual framework for this ap-

proach has been developed and an implementation is
planned.

The implementation of constraint enforcement capa-
bilities is planned as well. This step will be useful for
modeling closed kinematic chains in addition to chains
that involve constraints between the generalized coordi-
nates. Such constraints are particularly relevant in the
case of the human shoulder complex and the knee joint.
A control methodology has been developed to address
such cases [2]. This methodology makes use of a unique
operational space decomposition, which generates sepa-
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rate structures for task-motion control and constraint-force
control.

The muscle path generation facilities of the SAI mus-
culoskeletal environment do not include wrapping sur-
faces, which are useful for modeling complex muscle rout-
ing. SIMM includes these facilities and has been used to
augment the capabilities of SAI in this area. Consequently,
an implementation of wrapping surfaces would be a par-
ticularly useful addition to a future version of the SAI
environment.
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the SAI simulation environment are gratefully acknowledged. The
authors would also like to thank Katherine Holzbaur for provid-
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A musculoskeletal class design

Skeletal dynamics has been modeled in the SAI environ-
ment using a set of link, joint, and robot classes. At the top
of the class hierarchy is a world class that contains a list
of pointers to any number of robot objects. Each robot can
be loaded individually into the world by the user. An XML
file structure is used for storing geometric, kinematic, and
inertial properties for each robot.

Muscle mechanics have been modeled using a class hi-
erarchy consisting of an activator class, a contractor class,
a muscle class, and a muscle system class. Collectively, the
classes are used to define a system of controllable muscu-
lotendon actuators. Each robot object points to a muscle
system object. An XML file structure is used for storing
properties for the muscles that are contained in each mus-
cle system. A set of structures are used for storing muscle

Fig. 11. Muscle paths are generated
as Catmull-Rom splines through
muscle origin, insertion, and via
points

Fig. 12. The activator class state model. Activation, a, is the system
state (and output) responding to neural input

Fig. 13. The contractor class state model. Muscle length, lM , is
the system state responding to activation input. The output is the
tendon force, fT

and tendon lengths, velocities, and forces, as well as ac-
tivation properties, contraction properties, and path data.
The path structure contains a list of attachment points and
a list of pointers to corresponding attachment links. There
are also linear and cubic spline interpolation functions.
The linear interpolation function is used for interpolating
over the muscle force-length data. The spline interpola-
tion function employs a Catmull-Rom spline algorithm to
generate muscle paths (Fig. 11).
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Fig. 14. The muscle class
model consisting of point-
ers to a contractor and an
activator object. A muscle
object coordinates activa-
tion and muscle dynamics
for a given muscle-tendon
unit.

The activator class encapsulates muscle activation dy-
namics. Each object contains activation property data spe-
cific to an individual muscle. Based on a neural input, u,
muscle activation, a, is computed at each time-step. Fig-
ure 12 depicts the block diagram for this class.

The contractor class encapsulates musculotendon con-
traction dynamics. Each object contains musculotendon
path data and contraction properties data specific to an in-
dividual muscle-tendon pair. The overall musculotendon
path length, l, is computed given the path data and the
current configuration of the skeleton, q. Based on an ac-
tivation input, a, the force generated in the tendon, fT ,
as well as active and passive forces generated in the mus-
cle, f A and f P, are computed at each time-step. Figure 13
depicts the block diagram for this class.

The muscle class integrates the activator and contrac-
tor classes. It contains a pointer to an activator object and
contractor object and thus represents a single musculoten-
don actuator (motor nucleus and associated muscle-tendon
body). Methods are provided to interface to the activator
and contractor objects. Figure 14 depicts the block dia-
gram for this class.

The muscle system class is composed of a vector of
pointers to individual muscle objects. There are methods

to coordinate the initialization and update of individual
muscle objects. Additionally, at each update, system-wide
quantities are computed. These include the muscle Jaco-
bian, L, and the vector of joint torques, Γ . The muscle
Jacobian is computed given the path data and the current
configuration of the skeleton.

The set of classes previously described simulate feed-
forward musculoskeletal dynamics. A set of controls
(neural excitations) can be specified as input to drive the
feed-forward dynamics. In practice, these controls would
be produced by a dynamic optimization routine [22] or in
closed-loop by a feedback control routine [28]. To imple-
ment the feedback control structure described in Sect. 5,
a set of classes have been implemented that employ the
stiff tendon assumption described earlier. These are sim-
plifications of the muscle classes already described and
are used specifically for task-level musculoskeletal con-
trol. At each update, additional system-wide quantities are
computed. These include the muscle force-activation gain
matrix,K f and the muscle torque-activation gain matrix,
KΓ , as well as the muscle-induced torque boundaries ΓBi .
Various muscle effort measures, like the ones described in
Sect. 5.2, can be computed from these system-wide quan-
tities.
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