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Abstract

Biomechanical models generally assume that muscle fascicles shorten uniformly. However, dynamic magnetic resonance (MR)
images of the biceps brachii have recently shown nonuniform shortening along some muscle fascicles during low-load elbow flexion
(J. Appl. Physiol. 92 (2002) 2381). The purpose of this study was to uncover the features of the biceps brachii architecture and
material properties that could lead to nonuniform shortening. We created a three-dimensional finite-element model of the biceps
brachii and compared the tissue strains predicted by the model with experimentally measured tissue strains. The finite-element model
predicted strains that were within one standard deviation of the experimentally measured strains. Analysis of the model revealed that
the variation in fascicle lengths within the muscle and the curvature of the fascicles were the primary factors contributing to
nonuniform strains. Continuum representations of muscle, combined with in vivo image data, are needed to deepen our

understanding of how complex geometric arrangements of muscle fibers affect muscle contraction mechanics.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Skeletal muscle has a complex hierarchical organiza-
tion in which thousands of force-producing muscle
fibers are arranged within a connective tissue network.
The properties of individual fibers have been studied in
isolation over the last four decades (e.g., Gordon et al.,
1966; Denoth et al., 2002). However, how the behaviors
of muscle fibers may change once they are arranged
within muscle is not well understood. Therefore,
“lumped-parameter” models, which assume that all
fibers act independently and shorten uniformly, are
used to mathematically represent whole muscle.

Recent experimental studies have reported nonuni-
form shortening along fascicles (bundles of fibers) within
muscle (Ahn et al., 2003; Pappas et al., 2002; Drost et al.,
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2003). In one study, dynamic magnetic resonance (MR)
images taken of the long head of the biceps brachii
showed nonuniform shortening along some muscle
fascicles during low-load elbow flexion (Pappas et al.,
2002). These data challenge the simplifying assumptions
made in lumped-parameter models of muscle and
motivate us to identify the features of the biceps
architecture that could contribute to nonuniform
strains.

Even though the biceps brachii is typically considered
to have a parallel-fibered architecture, the fascicles have
a more complex geometrical arrangement (Fig. 1) that
could potentially contribute to nonuniform shortening.
For example, muscle shortening could be affected by the
difference in the lengths of the centerline fascicles and
the anterior fascicles and/or the curvature of the
anterior fascicles (Asakawa et al., 2002). Stretch in
passive structures, such as the internal aponeuroses or
the external fascia, also has the potential to create
complex strain distributions. There is evidence that
lateral transmission of tension between fibers is present
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Fig. 1. Simplified schematic of the biceps brachii architecture. The primary passive structures are the proximal aponeurosis, distal aponeurosis, and
external fascia. The muscle fascicles potentially are at different lengths and have a slight curvature as they insert into the aponereuroses. Stretch in the
aponeuroses, fascicle curvature, variation in fascicle lengths, and external fascia constraints could all potentially contribute to nonuniform strains

within the muscle.

(Street, 1983; Trotter, 1993), which plays a significant
role in force production and transmission (Huijing,
1999; Purslow, 2002). The resistance to shearing
between fibers and muscle volume preservation also
affect the tissue deformations. To explore the effects of
fascicle geometry and passive structures on the strain
distributions, a model that incorporates the fiber
properties, volume preservation, shear properties, and
detailed fascicle geometry of the biceps muscle is needed.

The purpose of this work was to uncover the features
of the biceps architecture that contribute to the nonuni-
form strains. We developed a new constitutive model for
muscle that represents the active and passive muscle
fiber characteristics, intramuscular connective tissue
properties, and muscle volume preservation. In this
model, we used a new set of parameters to characterize
tissue deformations that represents transverse properties
of the tissue in a novel and intuitive manner. We created
a finite-element model that replicated the major features
of the biceps brachii muscle internal geometry, simu-
lated the conditions imposed in a previous dynamic
imaging study (Pappas et al., 2002), and compared tissue
strains in the model with these in vivo data. We then
varied the model’s fascicle geometry to explore the
effects of the architecture on the strain distributions in
the muscle. Specifically, we examined the effects of the
nonuniform fiber lengths, fascicle curvature, aponeuro-
sis stretch, and external fascia on the distribution of
fascicle strains.

2. Methods
2.1. Constitutive model

We modeled muscle as a fiber-reinforced composite
with transversely isotropic material symmetry, similar to
the approach previously used to represent ligament
(Weiss et al., 1996). The model uses an uncoupled form
of the strain energy (Simo and Taylor, 1991; Weiss et al.,
1996) to simulate the nearly incompressible behavior of
muscle tissue. This uncoupled form additively separates
the dilatational (V1) and deviatoric (¥js,) responses of

the tissue
'}/(C: a0) = lIlisc>(il,i2,i4,1_5) + q’vol(-]) (1)

where C is the right Cauchy—Green deformation tensor,
a is the local fiber direction, I; and I, are deviatoric
invariants of C, I, and s are additional deviatoric
invariants of C that arise from the description of
transverse isotropy, and J is equal to /det(C) and is
the relative change in volume. The isotropic invariants
(I; and I,) have been used to represent the underlying
“matrix” material. I; equals the square of the local fiber
stretch and therefore is commonly used to represent the
strain energy within the embedded fibers. However, the
other invariants (I;,l>, and I5) do not have a geometrical
counterparts, and they couple the material’s responses in
all directions.

Our goal was to define a strain energy function that
separates the material’s responses to stretch in the fibers,
shearing along fibers, and shearing transverse to the
fibers. Representation of stretch in fibers is straightfor-
ward, as the standard invariant I; equals the square of
the local fiber stretch. To represent the intramuscular
connective tissue’s resistance to along-fiber and cross-
fiber shear, we used two new strain invariants (B
and B,). These invariants (Criscione et al., 2001)
represent the along-fiber and cross-fiber shear, respec-
tively (Fig. 2). Therefore, the deviatoric portion of the
strain energy (¥is,) was described by:

Visol, I, Is, 00) = Wi(B1(I4, I5)) + Wa(Ba(I1, I, I5))
+ W3(AL4), o) (2)
where o is the activation level in the muscle, and B, B,,

and / can be expressed in terms of I; I; and Is (Criscione
et al., 2001):

B, = {—52— 1, B, = cosh™! L__IS ,and
I 2T,
=1 (3)

These invariants allow for explicit and independent
representation of the material’s resistance to along-fiber
shear and cross-fiber shear.
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Fig. 2. Strain invariants used to formulate the constitutive model for
muscle. The invariants, proposed by Criscione et al. (2001),
characterize the along-fiber stretch (A), along-fiber simple shear strain
(B), and cross-fiber pure shear strain (C).

The functions W, and W, represent the along-fiber
and cross-fiber strain energies, respectively. The func-
tional forms adopted for our model are as follows:

Wi = Gi(By)* and W, = G2(B)%, 4)

where G; and G, represent the effective along-fiber shear
modulus and cross-fiber shear modulus, respectively.
Eq. (4) were used to represent both muscle and tendon,
with different values for constants G; and G, for each
tissue (Table 2).

The term W5 defines the relationship between Cauchy
stress in the fibers (of1°7), the fiber stretch (1), and the
activation level («):

muscle
0 W3 __fiber

ZT = G (% 00). ®)
To define afg;grl, we made several assumptions. First, we

assumed a normalized force-length relationship (fiber

of a muscle fiber (Zajac, 1989). Second, we assumed a
maximum isometric stress (o,,x) occurs at the optimal
fiber stretch (Aof), which defines the fiber stretch at

which sarcomeres reach optimal length. Lastly, we
assumed that the active fiber stress scales linearly with
the activation level (x), which varies from 0 (no
activation) to 1 (maximal activation):

O (2 1) = GanaxL ey (Vo )2/ of1- (6)
Eq. (6) reflects the fact that, throughout a deformation,
the maximum possible stress changes as a result of a
change in cross-sectional area of the fibers (see the
appendix for a derivation of this relationship).

The normalized function for total fiber force (f1%),
which is a function of the fiber stretch, was assumed to
be the sum of the passive fiber force (/i ) and active
fiber force (ffier):

ctive/*

ﬁber(l’ OC) _ sfiber (l) +o fiber (},) (7)

total passive active

A piecewise exponential form was assumed for the
passive fiber force, and a piecewise quadratic form was
assumed for the active fiber force (see Table 1 for
expressions for fI0% and f¢").

We also defined W5 for tendinous tissue (aponeurosis
and external fascia) using a function that characterized
the relationship between the Cauchy stress in the tendon

(g'rdomy and the fiber stretch (1):

0 W3tendon
o4

The expression for (¢'*"4°") (Table 1) and the associated
material constants (Table 2) were defined to be
consistent with the published stress—strain relationship
for tendon (Zajac, 1989).

y) — O_lendon(}v). (8)

Table 1
Constitutive Model Equations

Normalized passive fiber force i () see Eq. (7)

passive

R =0 At
S (2) = Py(ePelian=h 1) Fon <A<
S0 (7) = Psi/don + Pa Azar

Normalized active fiber force ,L&tl’fvre()n), see Eq. (7)
fAber (2) = 9(2/7on — 0.4)

active

fiber (1) = 9(4/Jon — 1.6)°

Jactive

fiber /7 2
fiber ) =1-4(1 - ),//lon)

2<0.6/00
A=1.47n
0.6;.0ﬂ <i<l1 .4ﬂoﬂ

Aponeurosis and external fascia along-fiber Cauchy stress 6*4°(3), see
Eq. (8)

gtendon H=0 A<1.0
O.lendon(l) — Ll(eLz(/Fl) -1 1.0</<)*
glendon(iy = L4+ Ly ey

*2* here represents the fiber stretch at which the gfgg{ve becomes

linear. P; and P, are defined so that fg;:{ve is CO and CI continuous at
J=2F

®2* here represents the fiber stretch at which ¢'*°" becomes linear.
L; and L, are defined so that ¢'"°" js CO and C1 continuous at
J=2*
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The definition of ¥,, was the same as that used by
Weiss et al. (1996), representing the nearly incompres-
sible behavior of biological tissues:

K
'onl = E In (J)za (9)

where K is the effective bulk modulus of the tissue. It
has been shown that prescription of K to be 1000 times
the shear modulus of the tissue will result in a nearly
incompressible behavior, and the strain distributions are
not highly sensitive to prescription of the bulk modulus
(Gardiner and Weiss, 2001). The constitutive model was
implemented in the nonlinear finite-element solver,
NIKED (Puso et al., 2002).

2.2. Mesh and fiber map definition

The finite-element hexahedral mesh geometry repre-
sented the long head of the biceps muscle tissue,
proximal aponeurosis, and the distal aponeurosis
(Fig. 3A). The model was axially symmetric about the
centerline and included approximately 20,000 linear
hexahedral elements.

Table 2
Constitutive Model Parameters

Muscle along-fiber constants Aponeurosis and external fascia

along-fiber constants

P, (dimensionless) 0.05 L, (Pa) 2.7E6
P, (dimensionless) 6.6 L, (dimensionless) 46.4
2% (dimensionless) 1.4 J* (dimensionless) 1.03
Omax(Pa) 3.0E5

Aofi (dimensionless) 1.4

Muscle transverse constants Aponeurosis and external

fasciatransverse constants

G, (Pa) 5.0E2 G, (Pa) 5.0E4
G, (Pa) 5.0E2 G, (Pa) 5.0E4
K (Pa) 1.0E7 K (Pa) 1.0E8

e external fascia

element .
N T

dz  distal aponeurosis

muscle tissue

For each element in the mesh, a fiber direction vector
was needed for input to the constitutive model (to define
a, in Eq. (1)). We created a fiber map, based on fascicle
arrangement measurements from ultrasound images
(Asakawa et al., 2002), that consisted of a set of
interpolated cubic splines (Fig. 3B). For each element in
the mesh (¢'), we determined the corresponding spline
(or “fiber”). The fiber direction (aj)) was calculated as
the vector tangent to the spline curve at the element’s
center point.

2.3. Comparison with in vivo data

We compared the average strains estimated with the
finite-element model to previously acquired dynamic
MR data (Pappas et al., 2002). In that study, cine phase-
contrast images were acquired as 12 subjects flexed their
elbows while resisting a low load (15% maximum
voluntary contraction). Displacements of 1 cm? regions
(placed along the anterior and centerline regions of the
biceps images) were tracked to estimate the change in
length (or “strains’) between regions as a function of
length along the muscle.

To compare the finite-element biceps model with the
image data, we generated simulations of the model at
15% activation during a quasi-static 4cm lengthening.
The boundary conditions (Fig. 3) consisted of applying
a 4 cm displacement (along z) to the distal end, fixing the
proximal end (along z), and imposing symmetry
boundary conditions to the interior regions. To visualize
the results, we created contour plots of the along-fiber
stretch, along-fiber shear strain, and cross-fiber shear
strain in the longest state. To compare with the imaging
results, we calculated the change in length between
nodes along the anterior and centerline regions as a
function of the distance along the muscle. In this
calculation, the change in length was determined with
the long state as the reference. We also calculated the
average displacement across 1cm? regions in the model

-y

sagittal view  top view

(A)
element fiber anterior
direction //——_—_\
ao! = — 22% é
——————————————

(B)

centerline
sagittal view  top view

Fig. 3. Mesh (A) and fiber map (B) geometry for the “Original Model,”” which represents the long head of the biceps brachii. The model is 15 cm long
and axially symmetric about the centerline. We applied a 4cm displacement (dz) to the distal end, fixed the proximal end (along z), and imposed

symmetry boundary conditions to the interior regions.
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Fig. 4. Schematics of each variation in the model geometry. Variation
I has parallel fascicles with equal lengths; Variation II has parallel
fascicles with a variation in lengths; Variation III has curved fascicles
with a variation in lengths; Variation IV has curved fascicles, variation
in lengths, and compliant aponeuroses; and the Original Model adds
external fascia to Variation IV.

and determined the change in length along these
averaged regions.

2.4. Model variations

To examine the effect of muscle architecture on
the strain distributions, we created four models that
were each variants (Fig. 4) of the “Original Model”
described above (Fig. 3). “Variation I"” had uniform
parallel fascicles. “Variation II”” had a variation in
fascicle lengths, but no curvature. “Variation III”
had the same fascicle geometry as the Original Model,
but had a rigid tendon and no external fascia.
“Variation IV” had the same fascicle and tendon
geometry as the Original Model, but did not include
the external fascia. The boundary conditions applied to
Variations -1V were similar to those applied to the
Original Model.

3. Results

The Original Model (Fig. 4) predicted fiber stretch
and shear strains that were nonuniform throughout the
muscle (Fig. 5). The along-fiber stretch (Fig. SA) varied
from 1.0 (within the tendon) to 1.6 (in the proximal part
of the centerline region and distal portion of the anterior
region.) The along-fiber shear strains (Fig. 5B) varied
from 0.0 to 2.4 and were the highest around the
aponeurosis. The cross-fiber shear strains (Fig. 5C)
varied from 0.0 to 0.5 and were the highest where the
fascicles insert into the aponeurosis.

The changes in length averaged over 1cm? regions in
the Original Model were within one standard deviation
of the average changes in length measured in 12 subjects
(Pappas et al., 2002) for both the anterior and the
centerline regions (Fig. 6). Along the centerline region
(Fig. 6A), the changes in length varied from 1% to 5%
in the aponeurosis elements and from 5% to 35% in the
muscle elements. Along the anterior region (Fig. 6B), the
change in element length varied from 15% to 25%.

The model with uniform fascicle lengths (Variation I)
predicted uniform changes in length along both the
anterior and centerline regions (Fig. 7). The model with
the different fascicle lengths (Variation II) predicted
nonuniform strains along both regions. The model with
fascicle curvature (Variation III) had strain distributions
that were slightly more nonuniform than those in
Variation II. The model with compliant aponeuroses
(Variation 1V) predicted strains (Fig. 8) that did not
differ significantly from the model without aponeurosis
compliance. Comparison of Variation IV with the
Original Model shows that the external fascia caused
the strains along the anterior region to be more uniform,
and had little effect on the centerline strains.

4. Discussion

The results of previous in vivo measurements in the
biceps brachii showed that the muscle shortens uni-
formly along the anterior fascicles of the muscle and
nonuniformly along the centerline fascicles (Pappas
et al., 2002). The purpose of this study was to uncover
the features of the biceps brachii muscle architecture
that contribute to nonuniform strains along fascicles.
Our continuum model of the biceps reproduced the
strain distributions observed in vivo. Furthermore, we
found that the variation in fascicle lengths and fascicle
curvature caused nonuniform fascicle strains in our
model.

In addition to nonuniform strains along fascicles, we
also observed significant shear strains in the model. It
has been suggested (Huijing, 1999; Purslow, 2002) that
high along-fiber shear strains (>2.0) occur in complex
muscles that undergo large changes in pennation angle
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Fig. 5. Contour plots of along-fiber stretch (A), along-fiber shear (B), and cross-fiber shear (C). The along-fiber stretch was highest along the
proximal part of the centerline and distal part of the anterior region. The along-fiber shear was highest around the distal aponeurosis. The cross-fiber

shears were high only in the distal part of the anterior region.
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Fig. 6. Change in length between nodes in the Original Model (solid lines), change in length between 1 cm? averaged regions in the Original Model
(dashed lines), and the image data (shaded regions, average + 1 S.D. from Pappas et al., 2002) along the centerline (A) and the anterior (B) regions of
the biceps. Percent change in length is plotted as a function of distance from distal tendon, normalized by the length of the biceps brachii long head
muscle belly. Negative values of percent change in length indicate muscle shortening with elbow flexion. The degree of nonuniformity in the strains is
indicated by the amount of variation in percent change in length along the muscle (i.e., if the strains along each region were uniform, the curves

would be horizontal.)

(>40°). However, in our model we show that high shear
strains can occur in muscles without large changes in
pennation (5° in our model). Characterization of the
shearing behavior between fibers is important because it
influences the potential for fibers to transmit force
laterally via intramuscular connective tissue (Huijing,
1999; Purslow, 2002). The potential for the intramus-
cular connective tissue to transmit force laterally has
also been demonstrated via measurements of nonlinear
force summation across motor units within muscle
(Sandercock, 2003) and the observation that some
muscle fibers terminate intrafascicularly (e.g., Trotter,
1990).

This paper introduces a novel constitutive formula-
tion for skeletal muscle that is based on strain invariants
(Criscione et al., 2001) that allow for direct physical
interpretation of deformations. Previous continuum
models of skeletal muscle have used two other formula-
tions. The first formulation represents muscle using the
standard deformation-coupling invariants (/; — Is) for
transverse-isotropy (Gielen et al., 2000; Johansson et al.,
2000; Martins et al., 1998; Oomens et al., 2003). While
some of the invariants (/3 and Ij) represent geometric
quantities (fiber stretch and volume strain, respectively),
the other terms (/;, I», and I5) do not have a geometrical
meaning, and they couple the material’s response in all
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(Variation I), the strains were uniform along both regions. The nonuniform parallel model (Variation II) predicted nonuniform strains along both the
centerline and anterior fascicles (there was nonuniform shortening between the two fascicles and nonuniform along both fascicles). The model with
fascicle curvature (Variation III) predicted slightly more nonuniform strains.
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Fig. 8. Strain distributions along the centerline (A) and anterior (B) fascicles in Variations III and IV and the Original Model. The compliant
aponeuroses have little effect on the distributions; if anything the aponeuroses create more uniform strains (comparison of Variations III and 1V).
The external fascia in the Original Model has a slight effect on the centerline strains and large effect on the anterior strains, creating more uniform

strains (comparison of Variation IV and the Original Model).

directions. Therefore, it is virtually impossible to define
strain energies that explicitly and independently repre-
sent intramuscular connective tissue’s response to along-
fiber and cross-fiber shear. Another approach is to
represent muscle as an orthotropic material (Jenkyn
et al., 2002; Yucesoy et al., 2002) in which the strain
energy is defined as a function of individual components
of the Green-Lagrange strain. In this case, the energies
for each component can more explicitly represent the
tissue structure; however, the strain energy depends on
the definition of a fiber axis (as in transverse isotropy)
and two material axes in the plane perpendicular to the

fiber axis. Therefore, transverse isotropy cannot be
represented using the orthotropic formulation. Our
formulation allows for explicit and independent repre-
sentation of the material’s resistance to along-fiber and
cross-fiber shear, without the dependence on the
definition of the transverse material axes.

Several aspects of muscle structure not included in our
model could also influence the strain distributions in
the biceps brachii. Our model incorporates only the
quasi-static elastic properties of muscle tissue. Dynamic
effects, such as sarcomere popping, have been shown to
create nonuniform sarcomere lengths along individual
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fibers (Morgan, 1990). However, these dynamic effects
may not play a major role in the biceps because this
muscle primarily operates in the ascending limb of the
force—length curve (Murray et al., 2000), and sarcomere
popping is a most prevalent in the descending limb of
the force-length curve. In addition, our model uses a
constant value for the maximum isometric stress and
activation level, assuming that the spatial distribution of
motor units and are uniform within the muscle. These
effects could be sources for nonuniform shortening
along muscle fibers. However, our model shows that the
quasi-static mechanical properties, in the context of the
complex fascicle geometry, can explain the nonuniform
strains observed in the experimental data. Future work
that incorporates the dynamic effects could evaluate
their relative contributions to nonuniform strains in
muscle.

Representation of muscle as a continuum with
complex fascicle geometry introduces a new set of
parameters for which little experimental data are
available. While some of the material properties have
been measured (e.g., force—length behavior of a fiber),
data describing other properties have not been deter-
mined experimentally (e.g., the resistance to along-fiber
and cross-fiber shear). Therefore, we began by using a
linear shear stress—strain relationship. We selected shear
modulus values that were within a physiological range
and resulted in strain distributions that were consistent
with the in vivo data in the biceps brachii. We found
that the local strain distributions were sensitive to the
shear properties. However, the relative influences of the
various geometrical features (variation in fascicle length,
fascicle curvature, aponeruosis stretch) were not affected
by large variations (two orders of magnitude) in the
shear properties, indicating that our overall conclusions
are robust. We expect the shear properties to vary across
muscles, as the amount and structure of the intramus-
cular connective tissues vary significantly across mus-
cles. The constitutive model that we present provides a
theoretical basis for future experiments that could
combine imaging measurements with in vitro mechan-
ical testing that may identify more complex shear stress—
strain relationships. We also assumed a variation in
fascicle lengths, consistent with measurements from
ultrasound and MR (Asakawa et al., 2002). Though
data do exist for the average optimal fiber length in the
muscle (Murray et al., 2000), no robust data exist that
characterize the variation in optimal fiber lengths within
the biceps brachii. Detailed architecture measurements
that capture the fiber trajectories in the muscle and the
distribution of optimal fiber lengths are needed.

Combining computational modeling and dynamic
image data can deepen our understanding of how
individual muscle fibers interact and function within
whole muscle. While we focused on the geometry of the
biceps brachii, the techniques introduced here could be

used to study a wide range of muscle architectures. Since
fascicle arrangement and passive structures vary greatly
across muscle architectures (Alexander and Ker, 1990),
the theoretical framework presented in this paper could
potentially enhance our understanding of the effects of
muscle architecture on normal muscle function. More-
over, muscle pathologies are often manifested by
alterations in fibers (Tardieu et al., 1982), connective
tissue (Lieber et al., 2003), and passive structures
(Shortland et al., 2002). Analyzing muscles using this
theoretical framework could also help us understand
how these alterations due to pathology affect muscle
function.
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Appendix

This appendix reviews the derivation of Eq. (6). We
begin by defining the Cauchy stress (of°") generated
by contraction in the fiber bundle with maximum
force (Fmax) With cross sectional area (a) and activation
level ():

TE(1) = Faxforet (2, ) /a(2). (A.1)

total

The expression (A.1) relates the maximum force and the
cross-sectional area to the Cauchy stress. To generalize
this equation, we assume that when fibers have stretched
to optimal fiber length (4oq), the maximum isometric
stress (omax) 18

Omax = Fmax/a(;mﬂ)~ (A2)

The maximum isometric stress in muscle has been
determined in a number of ways (e.g., Zajac, 1989 for
review). Combining Egs. (A.2) and (A.1)

oot (A, 0) = Tmanfotet (2 0) alAon) /a(2). (A3)

The change in cross-sectional area from the undeformed
configuration to the deformed configuration can be
expressed in terms of J and A (as derived from Criscione
et al., 2001, Eq. 3.6)

a(i)/a(i. = 1.0) = J'3 /1. (A.4)

Since our model is incompressible, we will assume J = 1.
Using (A.4), we define the area at any arbitrary A and at
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Mofl, and the ratio between these areas
a(A) =a(A = 1.0)/4,a(Aon) = a(A = 1.0)/ o,

a(Zon)/a(2) = 2/ Zon. (A.5)
Substituting (A.5) into (A.3), we arrive at an Eq. (6):
(2, 0) = Grmax 0 (2, )4/ Doft- (A.6)
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