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Computer models of the musculoskeletal system are
broadly used to study the mechanisms of musculoskeletal
disorders and to simulate surgical treatments. Musculo-
skeletal models have historically been created based on
data derived in anatomical and biomechanical studies of
cadaveric specimens. MRI offers an abundance of novel
methods for acquisition of data from living subjects and is
revolutionizing the field of musculoskeletal modeling. The
need to create accurate, individualized models of the mus-
culoskeletal system is driving advances in MRI techniques
including static imaging, dynamic imaging, diffusion imag-
ing, body imaging, pulse-sequence design, and coil design.
These techniques apply to imaging musculoskeletal anat-
omy, muscle architecture, joint motions, muscle moment
arms, and muscle tissue deformations. Further advance-
ments in image-based musculoskeletal modeling will ex-
pand the accuracy and utility of models used to study
musculoskeletal and neuromuscular impairments.
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THE OUTCOMES OF SURGERIES to correct disabling
movement abnormalities are unpredictable, and some-
times unsuccessful. Theoretically, patients’ abnormal

movement patterns can be improved by identifying the
biomechanical factors that contribute to abnormal
movement and designing treatments accordingly. How-
ever, many factors can contribute to the abnormal
movement. For example, persons with cerebral palsy
exhibit disturbances in voluntary control (1), muscle
spasticity (2), static muscle contractures (3), bone de-
formities that alter muscle paths (4), and limb malalign-
ment (5). Current diagnostic methods do not allow cli-
nicians to reliably differentiate between the potential
causes of abnormal movement to determine the most
appropriate treatment.

We believe that computer models of the musculoskel-
etal system can help provide a scientific basis for treat-
ing movement disorders. Models allow us to answer
“what if” questions, isolate individual sources for im-
pairment, and estimate parameters, such as muscle
forces, that are difficult to measure experimentally. In
recent years, computational models that characterize
the three-dimensional surface geometry of bones, kine-
matics of joints, and the force-generating capacity of
muscles have emerged as powerful tools for investigat-
ing muscle function. Models have been used to simu-
late orthopedic procedures, such as osteotomies (6,7),
tendon transfers (8–11), tendon lengthenings (12,13),
and total joint replacements (14–16). Musculoskeletal
models, combined with dynamic simulation, have been
used to understand normal (17) and pathological hu-
man movement (18).

These model-based studies have provided clinically
useful insights and general guidelines; however, the
results may have limited applicability to the treatment
of individual patients. There have been limited sources
for data that can be used to create musculoskeletal
models and to test the predictions made by simulating
treatments. The input parameters are typically based
on an accumulation of cadaveric measurements from a
range of studies. The predictions made by musculoskel-
etal models are tested with average data from unim-
paired adult populations. These traits pose two impor-
tant problems for using models to study individual
patients.

First, the models generally represent the musculo-
skeletal anatomy and function of average adult sub-
jects [e.g., Delp et al (19)]. It is not clear how muscu-
loskeletal deformities or even simply variations in size
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and age might affect the conclusions drawn from
analysis of these “generic” models. For example, how
might bone deformities in children with cerebral
palsy affect the anatomy and therefore function of
muscles? How might altered joint kinematics in os-
teoarthritic knees affect the moment arms of muscles
during walking? Advanced imaging techniques, com-
bined with novel computational methods, will allow
for creation of individualized models, enabling us to
answer these questions.

Second, the models make several simplifying as-
sumptions to accommodate the limited sources of data.
For example, models generally assume that all fibers
within muscle shorten uniformly [e.g., Zajac (20)]. Is
this assumption warranted? Do some muscles shorten
uniformly and others not? Dynamic imaging tech-
niques provide an opportunity to answer these ques-
tions (21). These new sources for data have also moti-
vated a new class of models that describe the detailed
internal mechanics of muscle tissue (22). These issues
may be particularly important when using models to
study neuromuscular or musculoskeletal disorders,
which often lead to alterations in muscle tissue prop-
erties.

In this review, we will discuss how several MR imag-
ing techniques offer new types of in vivo data that will
lead to a new pipeline for image-based musculoskeletal
modeling. We will summarize image-based character-
izations of musculoskeletal anatomy, complex muscle
architecture, joint kinematics, muscle moment arms,
and muscle tissue deformations. We suggest areas for
advancement and opportunity where MR imaging can
be applied directly to validating, improving, and creat-
ing new models of the musculoskeletal system. Muscu-
loskeletal models have broad applicability and have
been used to study stroke (23), spinal cord injury
(24,25), osteoarthritis (26), and sports injuries (27,28).
This review focuses on imaging in the context of creat-
ing musculoskeletal models that are used to study hu-
man movement. We refer the readers to other reviews
that describe related applications in cartilage and liga-
ment imaging and modeling (29–32).

THE TRADITIONAL AND FUTURE PIPELINES FOR
MUSCULOSKELETAL MODELING

Developing accurate models of the musculoskeletal
system is challenging because of the intrinsic complex-
ity of biologic systems. For example, the forces pro-
duced by muscles depend on their activation, length,
and velocity. Muscles have complicated three-dimen-
sional geometry and transmit forces through tendons,
which have nonlinear properties. Tendons connect to
bones that have complex shapes and span joints that
have complicated kinematics.

Traditionally, the inputs to a musculoskeletal model
(33) include three-dimensional bone surface geometry,
mathematical descriptions of joint kinematics, param-
eters describing each muscle’s path geometry (defined
for a range of joint motions), and muscle architecture
(which define the force-generating capacity of each
muscle), all of which are typically derived from cadav-
eric studies (Fig. 1a). Bone surfaces are described as

three-dimensional polygonal surfaces that have been
obtained by manually digitizing or scanning cadaveric
specimens. Joint models describe the transformations
that relate the position and orientation of one bone to
another. Some joints can be represented as a simple
hinge (e.g., the elbow), whereas other joints involve
three-dimensional sliding and rotation motions (e.g.,
the shoulder). It is challenging to determine the com-
plex kinematic relationships for joints using external
marker systems; therefore, most existing descriptions
of joint kinematics are based on cadaveric studies. The
path geometry of a muscle is generally characterized by
a series of points that are connected by line segments.
A minimum of two points (corresponding to the mus-
cle’s origin and insertion) is required to define a muscle
path. To characterize muscle architecture, models gen-
erally represent the length of the muscle fibers, the
length of the tendon, the orientation of the fibers with
respect to the tendon, and the maximum force in the
muscle (20); these parameters are also derived from
cadaveric studies.

Once the model is created, one can estimate muscle
lengths, moment arms, muscle forces, and joint mo-
ments for any arbitrary set of joint positions, providing
a powerful tool to study how muscles generate move-
ment. At this stage, models are evaluated by 1) compar-
ing muscle moment arms with cadaveric measure-
ments of moment arms [e.g., Buford et al (34) and
Murray et al (35)] and 2) comparing maximum joint
moments with experimentally-measured joint moments
[e.g., Nemeth et al (36) and Buchanan et al (37)].

With the integration of MR imaging techniques into
the pipeline for musculoskeletal modeling, more indi-
vidualized, detailed, and accurate models have begun
to emerge (Fig. 1b). For example, the introduction of
new input data—three-dimensional descriptions of
muscle surface geometry—has allowed for more de-
tailed representations of muscle geometry and architec-
ture. By creating volumetric finite-element representa-
tions of muscle from the surface data, combined with
description of the nonlinear stress-strain behavior of
muscle tissue, a new formulation for representing mus-
cle shape, geometry, and force was developed (38). This
is a valuable advancement from simply representing
muscles as a series of line segments because line seg-
ment approximations frequently make inaccurate as-
sumptions about how a muscle changes shape as it
interacts with underlying muscles, bones, and other
structures as joints move. Volumetric finite-element
representations of muscle have motivated the use of
diffusion tensor imaging to characterize the three-di-
mensional arrangement of muscle fascicles and dy-
namic imaging techniques to characterize the strain
fields predicted by three-dimensional muscle models.

The future image-based modeling pipeline will inte-
grate MR measurements to build models as well as to
evaluate the predictions made by models. Static MR
images will be acquired to evaluate musculoskeletal
anatomy of individual patients. Muscles will be defined
as three-dimensional volumes and the internal archi-
tecture of muscles will be derived from diffusion tensor
data. Joint kinematics will be prescribed from in vivo,
dynamic, loaded measurements of individual subjects.
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Figure 1. Traditional (a) and future (b) musculoskeletal modeling pipelines. The inputs to a musculoskeletal model have
included bone surface geometry, mathematical descriptions of joint kinematics, parameters describing each muscle’s path
geometry, and muscle architecture, all of which have been traditionally derived from cadaveric studies. Models are traditionally
evaluated by 1) comparing muscle moment arms with cadaveric measurements of moment arms and 2) comparing maximum
joint moments with experimentally-measured joint moments. The future image-based modeling pipeline will use MR measure-
ments to build models as well as to evaluate the predictions made by models. Static MR images will be acquired to characterize
musculoskeletal anatomy of individual patients. Muscles will be defined as three-dimensional volumes and the internal
architecture of muscles will be derived from diffusion tensor data. Joint kinematics will be prescribed from in vivo, dynamic,
loaded measurements of individual subjects. Models will be evaluated by 1) comparing muscle tissue deformations predicted by
volumetric muscle models with tissue deformations derived from dynamic MR imaging, 2) comparing muscle moment arms
predicted by models with moment arms measured from dynamic MR imaging, and 3) comparing maximum joint moments with
experimentally-measured joint moments.

Image-Based Musculoskeletal Modeling 443



Models will be evaluated by 1) comparing muscle tissue
deformations predicted by volumetric muscle models
with tissue deformations derived from dynamic MR im-
aging, 2) comparing muscle moment arms predicted by
models with moment arms measured from dynamic MR
imaging, and 3) comparing maximum joint moments
with experimentally-measured joint moments.

In the following sections, we will discuss how imaging
has and will enhance our ability to model musculoskel-
etal anatomy, muscle architecture, joint motion, mus-
cle moment arms, and muscle motion. Each section
provides specific examples, discusses the key chal-
lenges, and suggests future opportunities for develop-
ment and research.

IMAGING AND SEGMENTATION OF
MUSCULOSKELETAL ANATOMY

Image-based representations of musculoskeletal anat-
omy have been created as the basis for models of a
variety of musculoskeletal structures (39–46). In gen-
eral, standard pulse sequences have been used, such
as T1-weighted spin-echo imaging, spoiled gradient
echo imaging, and proton-density fast spin-echo imag-
ing. Depending on the sizes of the structures of interest,
images from multiple imaging series are combined to
create a full limb model (Fig. 2). Occasionally, models
are created from multiple image planes and merged to
provide greater accuracy in particular areas of interest,

Figure 2. Reconstruction of
muscle and bone surfaces from
multiple series of MR images, as
described by Arnold et al (39).
Surface models of the bones and
muscles are generated from
two-dimensional outlines that
were defined manually in im-
ages (left). Surfaces from over-
lapping series are registered to
obtain a representation of the
lower limb anatomy at one limb
position (right).
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such as the articular surfaces of a joint. However, as the
field of view and detailed needed increase, imaging
times can become longer than is practical in some pa-
tient populations.

Manual segmentation of bones and muscles from MR
images is an arduous process. In some cases, auto-
matic routines have been used to segment bones
(47,48). However, to date, there exists no robust, auto-
matic routine for segmenting muscle boundaries on MR
images, because the boundaries between muscles are
not well defined. Pulse sequences that highlight fatty
tissue improve the appearance of boundaries between
muscles, but muscles in some regions (e.g., the fore-
arm) have very little intermuscular fat, making auto-
mated segmentation difficult.

Several future developments in imaging have the po-
tential to improve our ability to efficiently and accu-
rately create models of musculoskeletal anatomy. Be-
cause the imaging time increases as a result of imaging
larger structures, advanced body or parallel imaging
techniques applied to imaging the musculoskeletal sys-
tem would be beneficial. Pulse sequences that distin-
guish between potential differences in longitudinal and
transverse relaxation times or diffusion properties be-
tween neighboring muscles could enhance the ability to
segment muscles. Advanced post-processing ap-
proaches that are tailored to musculoskeletal modeling
will further improve the efficiency of extracting muscle
anatomy from MR images. For example, Fernandez et al
(49) developed a hybrid image-based modeling ap-
proach, which predefines a “reference” model and uses
a free-form deformation approach to morph a high-
resolution model to fit a low-resolution model created
from MR data.

IMAGING MUSCLE ARCHITECTURE

Accurate characterization of the arrangement of fasci-
cles within muscle (muscle architecture) is essential for
understanding muscle function. Fascicle arrangements
can be complex and vary widely across skeletal muscles
(50,51). Currently, the standard methods for character-
izing muscle architecture are based on cadaveric mea-
surements (52,53) This limits the ability to represent
muscle architecture in clinical populations. Fascicle
length measurements from each muscle are averaged in
most cadaveric studies, giving a single length estimate;
therefore, models of muscle generally assume that all
fascicles within each muscle have the same length (20).
Models of muscle also assume that “pennation angle,”
defined as the angle the muscle fibers make with re-
spect to the tendon, is constant across all fibers as well.
These limitations have motivated a new class of muscle
models that provide the ability to represent the three-
dimensional arrangement of fascicles, not assuming all
fascicles have the same geometry. The challenge with
these new models is acquiring the data that describe
the three-dimensional arrangement of fascicles. Ultra-
sound techniques have been used to characterize in
vivo fascicle orientations and lengths (54,55); however,
they are limited to planar measurements and can only
be used to study superficial muscles.

Several investigators have proven the feasibility of
using diffusion tensor imaging (DTI) to show that the
principle eigenvalue extracted from the diffusion tensor
is aligned with the direction of fascicles within a muscle
[e.g., Sinha and Yao (56)]. DTI, combined with tractog-
raphy methods, have been used to extract the trajectory
of fascicles with mouse skeletal muscle (57). Blemker et
al (58) collected DTI data in the human calf, segmented
selected muscles within the volume, and used a trac-
tography algorithm to calculate all possible paths
within the volume for each muscle (Fig. 3). The paths
showed the difference between the lengths and penna-
tion angles of the soleus muscle (a short-fibered pen-
nate muscle) and tibialis anterior muscle (a long-fibered
parallel muscle). The major challenge when using DTI
to characterize the geometric arrangement of muscle
fascicles is that the transverse relaxation times in mus-
cle are relatively short; this limits the signal-to-noise
ratio, increases the number of averages needed to min-
imize noise, and therefore extends the acquisition
times.

DTI has the potential to provide input data for mus-
culoskeletal models that are unavailable otherwise. Fu-
ture developments in applying diffusion tensor imaging
and tractography to characterize complex muscle ar-
chitecture will provide important new data needed to
advance our understanding of muscle design and im-
prove muscle modeling.

IMAGING JOINT MOTION

Models of joint motion have been derived almost en-
tirely from experimental studies on cadavers [e.g.,
Walker et al (59)] and external measurements of limb
motions [e.g., Andriacchi et al (60)]. However, cadaver
experiments cannot robustly replicate in vivo loading
conditions, and motion capture techniques are based
on surface anatomy and are limited in determining the
internal motions of complex joints, such as the shoul-
der, knee, and wrist.

Using MRI to quantify joint motions has the potential
to provide an entirely new and more effective paradigm
for measuring motion. Kinematic MRI—that is, acqui-
sition of static images at multiple joint positions—has
been applied to studying the mechanics of the many
joints (61). For example, Goto et al (62) collected a series
of static MR images, and used an iterative closest point
algorithm (63) to estimate the complex rotations of the
carpal bones during wrist motion. For some cases, like
the patellofemoral joint, these “quasi”-static conditions
may not reflect the motion of the joint during certain
activities where the dynamics are important. Cine
phase-contrast (cine-PC) MR imaging has been shown
to be a promising tool for characterizing the three-di-
mensional kinematics of the patellofemoral joint in dy-
namic conditions (64).

In vivo dynamic measurement of joint kinematics
poses several challenges. First, obtaining physiological
conditions is difficult within the constraints of a typical
1.5-T bore, both to obtain the weight-bearing loads and
full range of joint motions. Gold et al (65) showed the
feasibility of using a backrest support in a 0.5T
open-MR system to study the knee under physiologic
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loads (Fig. 4). Devices such as these are necessary to
apply predictable loads and control motion. Choosing a
high-quality RF coil that does not restrict motion is also
a challenge; therefore, new coil designs that conform to
joints and allow full ranges of motion are needed.

Most dynamic images of knee motion have used
cine-MR techniques, which require a relatively large
number of repeated joint motions, limiting the ability to
examine joint motion with substantial loads. Further-
more, since cine MR requires subjects to perform re-
peatable motion cycles, it cannot be easily used to
study patients with neurological or musculoskeletal
impairments who have difficulty performing repeated
motions. Real-time imaging can greatly expand the op-
portunity for imaging of joint kinematics. Nayak et al
(66) imaged cardiac and vascular flow at 20 frames per
second. With further developments, such as implemen-
tation of a real-time imaging paradigm in an open-MR
system, this technology could allow for rapid and reli-
able measurement of joint motions during dynamic and
loaded movements.

The complexity of the motion of some joints presents a
challenge for imaging dynamic joint motion. For example,
the motion of the shoulder is complex: the humerus,
scapula, and clavicle all move simultaneously in non-
orthogonal planes. Multi-slice real-time imaging has great
application to imaging dynamic motion of complex joints
(67). The problem of tracking bone motion once quality
dynamic image data has been collected is also difficult.
Some investigators use phase-contrast imaging to encode
bone velocities, which can be integrated over time to esti-
mate positions (64). This approach can be problematic,
depending on the quality of the images and the complexity
of the motion. Registration of three-dimensional models
with dynamic images is another approach. The combina-
tion of velocity tracking and registration has also provided
some promising results (68).

Many recent developments in imaging joint motion
show its amazing potential, and we hope that future
improvement will involve integration of in vivo joint
kinematic information with subject-specific musculo-
skeletal models.

Figure 3. Tractography re-
sults that characterized the
complex three-dimensional ar-
chitecture of the soleus and
tibialis anterior muscles. As
seen in the inset zoom-ins, the
soleus fascicles have a large
angle with respect to the apo-
neurosis, and tibialis anterior
fascicles run more parallel with
the aponeurosis. (Reproduced
from Blemker SS, Sherbondy
AJ, Akers DL, Bammer R, Delp
SL, Gold GE. Characterization
of skeletal muscle fascicle ar-
rangements using diffusion
tensor tractography, In: Pro-
ceedings of the 13th Annual
Meeting of ISMRM, Miami
Beach, FL, USA, 2005, (Ab-
stract 1539) with permission.)
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IMAGING MUSCLE MOMENT ARMS

The moment arm of a muscle equals the perpendicular
distance from the muscle’s line of action to the joint
center, and determines the muscle’s ability to generate
force, produce joint moments, and actuate movement
(69). Moment arms are challenging to measure because
they may vary substantially with body position and
loading condition, especially for muscles that have
complex geometry. The standard method for measuring

moment arms in cadavers uses the tendon displace-
ment method, which uses the principle of virtual work,
where the moment arm of a muscle is the partial deriv-
ative of the muscle-tendon length with respect to the
joint angle (70). Biomechanics investigators have been
using imaging techniques to estimate muscle moment
arms for several years (71). Muscle moment arms have
been estimated from static MR images (72–74), com-
puted tomography (75), and ultrasound (76). These
types of studies have answered questions such as: how
does a muscle moment arm change between active and
passive isometric conditions (77), and how are knee
extensor moment arms affected by patella alta (78)?

Most previous MR-based moment arm measures are
based on static acquisitions, limiting the number of
measurements and loading conditions. Application of
dynamic imaging techniques to measuring muscle mo-
ment arms will enable moment arms to be character-
ized under more physiologic conditions. However, the
range of joint motions is limited in a traditional closed
bore MR system, and loading conditions are limited by
repetitions required by techniques such as cine-MRI.
Additionally, robust measurement of moment arms re-
quires the ability to track joint angles and the path of a
muscle, which may be complex and move in and out of
a single plane.

The future for measuring subject-specific moment
arms is to measure muscle geometry during dynamic
and loaded motions with real-time MR in open or large-
bore scanners. Blemker and McVeigh (79) recently
demonstrated the feasibility of measuring moment
arms over a full range of motion using real-time MRI in
a 70-cm bore scanner (Fig. 5). Refining real-time tech-
niques, including multiplanar measurements and add-
ing specialized loading devices will allow for physiolog-
ical measurements of muscle moment arms. MR-based
moment arm measurements will be most powerful

Figure 5. Real-time imaging of knee
muscle moment arms. Real-time images
were acquired in the thigh during dy-
namic knee flexion-extension (a–c), and
knee extension moment arms of the rec-
tus femoris muscle (d) were determined
from these images. Green dashed lines
in a-c indicate the rectus femoris mus-
cle-tendon length measurement. Knee
joint angles were also measured for each
frame, and moment arms were calcu-
lated through the range of motion. The
moment arms are compared with Buford
et al (34) (dotted lines correspond to the
average values from 15 cadaveric speci-
mens; shaded regions correspond to � 1
SD). (Reproduced from Blemker SS and
McVeigh ER, Real-time measurements
of knee muscle moment arms during dy-
namic knee flexion-extension motion.
In: Proceedings of the 14th Annual Meet-
ing of ISMRM, Seattle, WA, USA, 2006
(Abstract 3619), with permission.)

)

Figure 4. Schematic drawing of a custom MR-compatible
back support to image the knee under physiologic loads in an
open MR scanner. The support is made of plastic pipes, a
sliding mesh backrest, and a water-filled counterweight. The
entire back support fits between the two halves of the “double
doughnut” GE Signa SP system. The knee is positioned at
isocenter. (Reproduced from Gold GE, Besier TF, Draper CE,
Asakawa DS, Delp SL, Beaupre SG. Weight-bearing MRI of
Pattellofemoral joint cartiledge contact area, J Magn Reson
Imaging 2004;20:526-530, with permission of Wiley-Liss, Inc,
a subsidiary of John Wiley & Sons, Inc.)

)

Image-Based Musculoskeletal Modeling 447



when done in conjunction with the creation of MR-
based models so that comparisons between the model
and image data can be made.

IMAGING MUSCLE TISSUE DEFORMATIONS

Dynamic imaging of muscle motion has challenged the
simplifying assumptions made in muscle models and
provided a valuable source of data for evaluating the
next-generation of muscle models. Finni et al (80) used
cine-PC MRI to explore the complex deformations of the
soleus muscle, and Asakawa et al (81) used cine-PC
MRI to characterize the mechanics of muscles following
tendon transfer surgery. Similarly, Pappas et al (21)
acquired cine-PC images in the biceps brachii muscle
during low-load elbow flexion and showed that some
regions of the muscle shorten nonuniformly, challeng-
ing the commonly made assumption that all muscle
fascicles shorten uniformly (Fig. 6). These results mo-
tivated the development of a more detailed model of
muscle to explore the features of the muscle’s architec-
ture that could contribute to nonuniform strains (22).
Once developed, and validated with the image data, the
model revealed that the arrangement of fascicles within
the muscle was a primary reason for the nonuniform
shortening. Combining computational modeling and
dynamic image data can deepen our understanding of
how individual muscle fibers interact and function
within whole muscle. Muscle pathologies are often
manifested by alterations in fibers (82), connective tis-
sue (83), and passive structures (84). Analyzing mus-
cles using a combination of tissue-level imaging and
continuum-level modeling will help us understand how
these alterations due to pathology affect muscle func-
tion.

Characterizing muscle deformation using dynamic
imaging poses several interesting challenges. Cine MR
techniques, which require several repetitions, limit the
loading conditions and applicability to persons with
neurological disorders. Asakawa et al (85) demon-
strated the feasibility of using real-time phase contrast
MR to measure velocity in the biceps brachii. Similar to
challenges in moment arm and joint motion imaging,
the size of the bore in traditional imagers limits which
muscles and types of motions can be studied. Applica-
tion of dynamic imaging techniques to large-bore or
open-MR systems will also allow for more muscles to be
studied over greater ranges of motion.

The ability to accurately determine muscle motion
from dynamic images is a challenge, as muscle defor-
mations can be three-dimensional and highly complex.
Most investigators have used phase-contrast tech-
niques and numerical integration to track the displace-
ment of specific regions over time. However, these data
are averaged over several pixels, displacements are de-
termined by integration through time, and the strains
calculated are one-dimensional, so it is difficult to ex-
tract the fine resolution displacements and strain fields
that are needed to describe the internal mechanics of
muscles in detail. MR tagging provides useful visualiza-
tions of three-dimensional tissue motion, and has been
used extensively to characterize myocardial wall motion
[e.g., Declerck et al (86)]. MR imaging with displacement
encoding with stimulated echoes (DENSE) directly en-
codes tissue displacement, and has been demonstrated
to provide accurate assessment for three-dimensional
strains in myocardial tissue (87). Techniques such as
MR tagging and DENSE have the potential to provide
the deformation data needed to improve our under-

Figure 6. Comparison of dynamic images (21) and finite-element model results (22) from the biceps brachii muscle. Tissue
regions of interest in the first cine magnitude image of the cycle (a), and tracked until the elbow fully extended. To compliment
the image data, a model of the biceps brachii was built—the model included a finite-element mesh (separating tendon, muscle,
and external fascia) and a fiber map that defined the fiber direction for each element (b). Conditions similar to that of imaging
experiment were imposed on the model. Changes in length between 1 cm2 regions along the centerline of the muscle in the image
data (shaded regions, average � 1 SD) are compared with changes length between nodes in the model (solid lines) and 1 cm2

average regions in the model (dashed lines). The model compares well with the image data (c), and the difference between the
averaged and unaveraged models highlights the effects of using averaged regions to calculate strains.
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standing of complex muscle motions and rigorously
evaluate predictions made by muscle models.

Conclusions drawn from current dynamic measure-
ments of muscle motion are also limited by the fact that
it is difficult to accurately measure velocities or dis-
placements within external and internal tendons. Ex-
ternal and internal tendons play an important role in
muscle mechanics (20), and the mechanics and geom-
etry of tendons are often altered via tendon lengthening
and transfer procedures in persons with neuromuscu-
lar disorders. Therefore, methods to accurately charac-
terize the motion and deformations within tendon are
needed. The key challenge is that tendinous tissue has
a low transverse relaxation time, which limits the ability
to obtain enough signal to encode or detect motion
using cine phase-contrast, DENSE, or tagging. Ultra-
short echo-time (UTE) pulse sequences have echo times
that are as much as 100 times shorter than most tra-
ditional pulse sequences, and can therefore obtain sig-
nal in structures, such as tendons [e.g., Robson et al
(88)], that have short transverse relaxation times. Ex-
tending UTE to dynamic imaging would allow for ten-
don tissue motion to be characterized and therefore
enhance the applicability of dynamic imaging to study-
ing detailed muscle mechanics.

CONCLUSIONS

In this review, we highlighted many imaging techniques
that allow for capture of the geometry, architecture,
motion, and mechanics of the musculoskeletal system.
This has, and will continue to, revolutionize the fields of
musculoskeletal and movements biomechanics. We
provided some examples in each section of how the
measurements alone can be used to answer important
questions in biomechanics, and discussed how various
types of image data can be integrated into a musculo-
skeletal modeling framework.

These measurements and models become more pow-
erful when they are combined with other types of
biomechanical tests or functional assessments. For ex-
ample, Morse et al (89) combined MR-based measure-
ments of muscle moment arms and volumes with ex-
perimental measurements of joint torques, allowing for
an integrated study of how the force- and moment-
generating properties of muscle change with aging. In
another example, an imaging study was integrated with
clinical motion analysis data and MR-based modeling
to advance the understanding of the rectus femoris
transfer surgery, which is a common treatment for per-
sons with cerebral palsy who walk with a stiff-knee gait
(81,90,91). This surgery is designed to convert the mus-
cle from knee extensor to a knee flexor; however, dy-
namic images acquired in these subjects showed that
the muscle still functioned as a knee extensor following
surgery. The subjects’ postoperative gait analysis
showed that many subjects still showed improvements
in function from the surgery. This result indicated that
the mechanism for improvement in surgical outcomes
is not conversion of the muscle’s action, but perhaps
other effects, such as minimizing its ability to extend
the knee—important information for clinicians who de-
sign and plan this treatment.

Other areas of imaging not discussed in the previous
sections of this review also have application to muscu-
loskeletal modeling. For example, MR elastography has
been applied to characterizing the mechanical response
of muscle tissue (92–94)—important information that
could complement computational models of muscle.
Previous investigators have demonstrated the potential
utility of this technique; the major future challenge is
developing the appropriate postprocessing methods to
extract material properties that can be used in models
of muscle.

Image-based musculoskeletal modeling will have a
broad impact in improving the treatments for a variety
of clinical populations. This review has provided several
fruitful directions for innovative imaging research that
will also serve to accelerate progress toward developing
highly individualized musculoskeletal models. Areas of
opportunity exist in pulse-sequence design, body imag-
ing, dynamic imaging, diffusion imaging, coil design,
and image segmentation, and many of these areas ap-
ply to multiple aspects of musculoskeletal modeling.
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