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Abstract This paper presents a task-level control methodology for the general class of holo-
nomically constrained multibody systems. As a point of departure, the general formulation
of constrained dynamical systems is reviewed with respect to multiplier and minimization
approaches. Subsequently, the operational space framework is considered and the underlying
symmetry between constrained dynamics and operational space control is discussed. Moti-
vated by this symmetry, approaches for constrained task-level control are presented which
cast the general formulation of constrained multibody systems into a task space setting us-
ing the operational space framework. This provides a means of exploiting task-level control
structures, native to operational space control, within the context of constrained systems.
This allows us to naturally synthesize dynamic compensation for a multibody system, that
properly accounts for the system constraints while performing a control task. A set of exam-
ples illustrate this control implementation. Additionally, the inclusion of flexible bodies in
this approach is addressed.

Keywords Task-level control - Constrained multibody dynamics - Operational space - Null
space - Flexible/rigid multibody system

1. Introduction

The control of multibody systems is of interest to a number of research communities in a

variety of application areas. In particular, the robotics community has focussed on the control
of high degree-of-freedom robotic systems. Typically, this has involved the control of serial
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Fig. 1 Parallel mechanisms consisting of serial chains with loop closures described by a set of holonomic
constraints. (Left) A spatial positioning platform [7]. (Right) Bilateral representation of a parallel-serial robotic
shoulder mechanism [24]

and branching chain systems. The traditional approach for controlling these systems has been
joint space (ie., configuration space) control. The operational space approach was introduced
by Khatib [19, 20] to simplify the control problem by specifying a task space rather than a
joint space control objective. Task space is used interchangeably with operational space to
refer to the space of motion control coordinates. As one simple example, the task space for
controlling a robot arm can be defined as the Cartesian space used to describe the position
of the end effector. Using the operational space approach the configuration space dynamics
of a multibody system are mapped into an appropriate task space. This is advantageous for
control purposes since the operational space method provides task-level dynamic models and
structures for decoupled task and posture control. This allows for posture objectives to be
controlled without dynamically interfering with the primary task(s).

The benefits of operational space control have been primarily exploited for serial and
branching chain systems. However, there has been substantially less emphasis on the use of
operational space control for closed chain or parallel systems, like the structures of Figure 1
[7]. Closed chains are a subset of the larger class of holonomically constrained systems which
include biomechanical structures such as the knee and shoulder complex of Figure 2. Rather
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Fig. 2 Holonomic constraints provide more physiologically representative models. (Left) The tibia translates
as a function of knee flexion [9]. (Right) The shoulder girdle (scapula and clavicle) is kinematically coupled
to the glenohumeral joint [14]
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than loop closures these examples involve constraints internal to the branching chains [9, 14],
expressed as algebraic dependencies between the generalized coordinates.

This paper addresses the use of task-level approaches for the control of holonomically con-
strained multibody systems. As a point of departure, the general formulation of constrained
dynamical systems is reviewed. This entails an elaboration of multiplier and minimization
forms of the constrained multibody equations of motion. The basis for task-level control is
then presented with a review of the operational space method. Operational space dynamic
consistency provides a mechanism for exploring the underlying symmetry between task
and constraint dynamics. Formulations for constrained task-level control are then presented,
punctuated with a set of examples. Finally, the inclusion of flexible bodies in this approach
is discussed.

2. Constrained dynamics

The subsequent sections review the dynamical formulation of constrained multibody systems.
This review covers the well known method of Lagrange multipliers, a multiplier elimination
method, and the less well known minimization formalism of Gauss’ Principle. This latter
formalism naturally leads to an explicit solution of the constrained dynamical system and
the subsequent formulation of a generalized constrained equation of motion. The multiplier
form, the eliminated multiplier form, and the generalized constrained form will each be used
in Section 5 to formulate novel methods for constrained operational space control.

2.1. Unconstrained systems

The equations of motion for a multibody system that is unconstrained with respect to con-
figuration space are expressed in standard form as [3],

M(q)G+blg.¢)= f(q.4)+ B(g,.¢)" u (1

where ¢ is the n x 1 vector of generalized coordinates, u is the k x 1 vector of control
inputs, B(q, ¢)" is the n x k matrix mapping control inputs to generalized actuator forces,
M(q) is the n x n mass matrix, b(q, q) is the n x 1 vector of centrifugal and Coriolis terms,
and f(q, q) is the n x 1 vector of generalized applied forces. For conciseness we will often
refrain from explicitly denoting the functional dependence of these quantities on ¢ and 4.
This practice will also be employed with other quantities as well.

Throughout this paper we will use a modified and more specialized form of (1) common
in robotics [6],

T=M(q)§+bg.9) +gq) @

where 7 is the n x 1 vector of generalized actuator forces (torques) and g(g) is the n x 1
vector of gravity terms. The form of (2) assumes that the generalized actuator forces can be
directly interpreted as control inputs; thatis, 7 = BT u = u,ie. BT = 1. Additionally, the gen-
eralized applied forces are assumed to be restricted to gravity terms; that is, f(q, ¢) = —g(q).
This second assumption is relatively minor and will not limit the generality of the approaches
presented in this paper. The first assumption regarding the control inputs restricts our exam-
ination to fully actuated systems. However, this limitation can be overcome by introducing
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a selection matrix (similar to BT in mapping actuator control inputs to generalized actuator
forces). We utilize this for a partial examination of under-actuated systems in Section 5.

2.2. Multiplier form of the system dynamics

We introduce a set of m¢ holonomic and scleronomic constraint equations, ¢(q) = 0, that
are satisfied on a p = n — m¢ dimensional manifold, Q7, in configuration space, Q = R”".
The gradient of ¢ yields the m¢ x n constraint Jacobian matrix, ®. Adjoining the constraints
to (2) by introducing a set of constraint forces yields the dynamic equation,

T=Mj+b+g—T7¢ 3)
subject to,
PG +&3=0 (@=0, &G=0) )

where T¢ is the vector of generalized constraint forces. The variation of the constraint equa-
tions yields 8¢p(q) = ® 8¢ = 0, which implies §¢q € ker(®). The operator ker() represents
the kernel of a matrix and in this context will be synonymous with the null space of a ma-
trix throughout this paper. Since the constraints do no virtual work under these constraint
consistent virtual displacements we have,

Tcldq Véq € ker(P) 5)

The ker(®) represents the tangent space of the constrained motion manifold, Q7, at a point, g,
in configuration space. The constraint consistent virtual displacements, 3¢, lie in this tangent
space and the generalized constraint forces, T¢, are orthogonal to it. This is illustrated in
Figure 3. Based on this, the following is implied,

T¢ € ker(®)*F = im(®7) (6)

where the operator im() represents the image of a matrix and in this context will be synony-
mous with the range of a matrix throughout this paper.

Fig. 3 The configuration space
constrained motion manifold,
QP. All constraint consistent
virtual variations, 8¢, lie in the

ker(®)

tangent space of Q7 and are e
orthogonal to the constraint
forces

=0}
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Thus, the generalized constraint force can be represented as a linear combination of the
columns of ®7 . That is, 7¢ = ®7 A, where X is a vector of unknown Lagrange multipliers.
The constrained multibody equations of motion, expressed in the familiar multiplier form,
are thus,

T=Mj+b+g—d'A )

subject to (4).
2.3. Elimination of multipliers

The Lagrange multipliers can be eliminated from (7) by first expressing the zeroth order
variational equation,

Tc-8q+(T—-—MG—b—g)-6g=0 ®)
By restricting the variations to constraint consistent virtual displacements we have,

Tc-8q+(T—-MG—b—g)-8g=0 ©
Véq € ker(P)

Recalling (5) we note that the generalized constraint forces produce no virtual work under
virtual displacements that are consistent with the constraints. Thus, the term 7¢ - 8¢ vanishes
from (9) and we have the following orthogonality relation,

MGi+b+g—71)-8¢g=0
Véq € ker(P)

(10)

We now define a matrix, C € R"*?, whose columns span the null space of ®. This im-
plies that im(C) = ker(®). Thus, ®C = 0 and C T®T = (. In this manner C orthogonally
complements ®. That is,

im(C) = ker(®) = im(®7)* (11

Geometrically, im(C) represents the tangent space of the constrained motion manifold, Q7
(see Figure 3). These geometric properties are discussed in further detail in [2, 17]. While not
required for the subsequent analysis we specify that the columns of C be mutually orthogonal
and thus form an orthogonal basis, C, for the null space of ®. The constraint consistent virtual
displacements, 8¢q € ker(®), can then be expressed in terms of the virtual displacements of
a minimal set of p independent coordinates, g ,,

3¢ =C3dq, (12)
@ Springer
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Using this relationship we can express (10) over all possible variations of a minimal set of
coordinates,

C"™M§+C"b+C"g—C"7)-8q,=0

Véq, e R’
13)
U
Clr=Cc"Mj+CTb+CTg
Noting that§ = C¢, and § = C§, + qu, we can express (13) as,
Tp = Mp(q)qp+bp(q7 qp)+gp(q) (14)
where,
M,(q) = C"MC
b,(q.4,)=C"b+C"MCq, as)
g@=C'g
T, =C"r

The approach outlined here is well known in multibody dynamics and is consistent with the
projection method of [2]. This approach was also used by Russakow et al. for application
to serial-to-parallel chain manipulators [31]. We note that (14) includes a mix of our initial
set of n generalized coordinates, ¢, as well as the minimal set of p independent coordinates,
q - Since the constraints are holonomic we would expect there to be a mapping, in principle,
which could be derived from the constraints that would yield ¢ = g(q ,). In this case C could
be computed explicitly from the mapping rather than computing the null space of ®; that is,
C = dq/9q . Additionally, the terms in (14) could be expressed as functions of ¢ , rather than
q. Since ¢, are independent coordinates the constraints would be implicitly addressed and
the resulting system would be unconstrained with respect to configuration space. However,
finding the mapping ¢ = g(g,) would be difficult in general. In such cases a null space
method or a coordinate partitioning method [36] would need to be used to compute C.

Additionally, the generalized coordinates, ¢ o and the generalized forces, 7, do not
necessarily have a natural and physically intuitive meaning, making it difficult to standardize
their use in a numerical algorithm. This is in contrast to the coordinates, ¢, which are chosen
specifically to describe the system in the most natural and physically intuitive manner. It
is usually desirable to select ¢ in a manner that preserves the physical meaning of the
generalized forces as torques about individual joints. Often when using a minimal set of
coordinates this is not the case, since a single generalized coordinate may influence multiple
joint displacements. Therefore, from an algorithmic perspective it is often preferable to deal
with a non-minimal but standardized set of generalized coordinates (like joint angles) that
are amenable to numerical formulation, and compute the dynamic terms corresponding to
that kinematic parametrization. Equation (14) can then be used, as is, parameterized in terms
of q.
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2.4. Minimization form of the system dynamics

By expressing the zeroth order variational Equation (9) we arrive at an orthogonality relation
(10). Higher order variations yield similar orthogonality relations. In the particular case of
second order variations, known as virtual accelerations, we can arrive at a minimization
principle. This was first demonstrated by Gauss [11] and later investigated by Gibbs [12] in
modified form. We begin by first expressing the second order variational form of (3),

Tc-8G+(T—M§j—b—g)-6G§=0 (16)
The virtual accelerations, §¢, refer to all acceleration variations which satisfy the constraints
while time, position, and velocity are fixed. Since we are assuming scleronomic constraints

we only need to be concerned with position and velocity remaining fixed. Given ¢ = 0 and
84 = 0 the variation of (4) yields,

S(BG+ DG =B5G=0 (17)

which implies that §§ € ker(®). Under this condition (16) can be restricted to constraint
consistent virtual accelerations,

Tc 8§ + (T —Mj—b—g) 8§ =0 )
Vé§ € ker(P)

Recalling (5) we have,
Tcld§ Vg eker(P) (19)
Thus the term 7¢ - §§ vanishes from (18) and we have the following orthogonality relation,

(M +b+g—7)-8§=0
V384 € ker(®)

(20)

subject to (4). At this point we introduce the Gauss function, G, defined as a mass-weighted
distance measure between the constrained and unconstrained accelerations,

1
G4 5 - G)"M@G —g,) 1)

where §, is the unconstrained acceleration of the system. That is, §, is the generalized
acceleration that the system would exhibit in the absence of constraints,

G,=M'(t-b-¢g (22)

Taking the gradient of G with respect to § yields,

a
a—gZM(é—iI‘*)ZMtierJrg—T (23)
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Fig. 4 The Gauss function, G, is
minimized subject to the
constraints. At the solution point,
g, the gradient of G is orthogonal
to the space of virtual g
accelerations. Geometrically, the
solution minimizes the distance
(mass-weighted) to the
unconstrained acceleration, §,

6(4) = (4 - 4.)

level sets

Substituting (23) into (20) yields,

0

8—? -8G =0 V&g € ker(®) 24)
q

This implies that the solution of the constrained multibody dynamics problem yields a sta-

tionary value of G over the set of constraint consistent accelerations, or,

8G=0 V88§ € ker(P) 25)

Subject to (4). This is illustrated geometrically in Figure 4 and expresses Gauss’ Principle of
Least Constraint [4,30, 34]. These conditions require that the actual generalized acceleration,
¢, result in a stationary value of the Gauss function, G, and be consistent with the constraints.
Moreover, since G is a quadratic form and M is symmetric positive definite, § must minimize
G subject to the constraints.

2.5. Solution of the constrained dynamics problem

As we have seen, the problem of constrained multibody dynamics can be stated as a multiplier
problem or a minimization problem. Both of these statements are equivalent. That is, the
solution of the multiplier problem minimizes the Gauss function, G, over the set of constraint
consistent accelerations and the solution of the minimization problem satisfies the multiplier
equations.

We can arrive at an explicit solution of the constrained dynamics problem. Using (22) we
can express (7) and (4) as,

M@G—g)=2"X

. (26)
PG+ Pg=0
It is straightforward to solve this system. The solution yields,
§=-M"'®" (@M ') (D4, + ®9) +4.
27

A=—(@M @) (@4, + D9)
@ Springer
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We now express the mass-weighted (right) inverse of ®,
&=M'dT( @M '®T)! (28)
where ®® = 1 and, equivalently, @TfI'T = 1. We then have,
§=-0bg+(1-dD)j, (29)
Defining the n x n constraint null space matrix, ® 21— &P, we can write,
j=—-®®q + 04, (30)

Since this solution satisfies Gauss’ Principle we know that it minimizes G while satisfying

the constraints. The mass weighted inverse, ®, of the constraint matrix therefore yields the
solution of (4) which minimizes G.

It is noted that ® and © satisfy the condition ®® = 0 and, equivalently, 7 ®7 = 0.
Further, if we form the projection matrix PT = P which projects any vector in R” onto the
null space of ® we have,

PT=cc”"=1-3"(®d") '® 31

where C is the matrix, defined in Section 2.3, which spans the null space of ®. The expression
for PT in (31) has a similar form as the expression,

O =1-¢>=1-d"( @M 'd") 'dM! (32)
Consequently P = CCT can be regarded as a kinematic constraint null space projection
matrix and ©7 can be regarded as a mass-weighted constraint null space projection matrix.
The physical and geometric meaning of ® and ® will be discussed further in Section 4.
2.6. Generalized constrained equation of motion
Given the explicit solution of the constrained dynamics problem (27) we now wish to express
an alternate form of the constrained dynamical equations of motion. We begin by expressing
Ain (27) as,

A= -—H[®M '(t —b—g)+ ®4] (33)

where H is the m¢ x m¢ constraint space mass matrix which reflects the system inertia
projected at the constraint,

H2 @M 'a")™! (34)
Substituting (33) into (7) yields,

Mij+b+g=—-2 HP¢+ 1 - " HEM )yt + B"HEM '(b+ g) (35)
@ Springer
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We now define the m¢ x 1 vector of centrifugal and Coriolis forces projected at the constraint,
a2 H®M 'b — Hbg (36)
and the m¢ x 1 vector of gravity forces projected at the constraint,
pLH®M g (37
We also note that,
O =1-9"d" =1- d"HOM! (38)

Substituting these expressions into (35) we have the concise expression which we will refer
to as the generalized constrained equation of motion,

Olr=Mj+b+g—® (a+p) (39)

An alternative means of deriving this equation involves directly mapping the configuration
space Equation (7) into the constraint null space using ®7,

OTr=0"Mj+0O0"p+0"g—-OTH" A (40)
Noting that ®” " = 0 and manipulating we have,

O r=Mj+b+g—d"d Mj—"d b-3"d"g

=Mj+b+g— P HPj— " (a+p) — P"HPg (41)
Substituting in our constraint condition, ®¢ = —®4, yields,
O'r=Mj+b+g—® (a+p) 42)

3. Task space dynamics

In the previous section we considered configuration space descriptions of the dynamics of
constrained multibody systems. Our objective is to reformulate these descriptions in the
context of task space. This will provide the foundation for constrained task-level control to
be discussed in the next section. As a starting point we begin with a review of the basic
operational space framework [19, 20].

The operational space framework addresses the dynamics and control of branching chain
robots. Given a branching chain system the initial step involves defining a set of m task, or
operational space, coordinates, x. The function x(q) represents a kinematic mapping from
the set of generalized coordinates to the set of operational space coordinates. The operational
space coordinates can represent any function of the generalized coordinates but typically
are chosen to describe the set of control coordinates associated with a motion control task.
Figure 5 illustrates simple branching chain systems where the operational space coordinates
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xi(q)

Fig.5 (Left) A simple task description for a serial chain where the operational space coordinates describe the
Cartesian position of the terminal point of the chain. (Right) A branching chain where the operational space
coordinates describe the positions of both terminal points

are chosen to be the Cartesian coordinates associated with positioning the terminal point(s)
of the chain. Further, by taking the gradient of x we have the relationship,

x=J@)q (43)

where J(q)isthemr x ntask Jacobian matrix. This relationship applies to both kinematically
non-redundant and redundant systems. In the case of non-redundant systems the inverse of
this relationship is well defined outside of singularities. For such cases we have,

g=1J'x (44)
In the redundant case we can define the right inverse of J as,
utart=n 45)
The solutions to J¢ = X are thus given by,
¢ =J'%+Nq, (46)

where N £ 1 — J*J and g, is an arbitrary vector in R”.

At this point we can address operational space kinetics. In the non-redundant case any
generalized force can be produced by an operational space force, f, acting at the task point
along the task coordinates. Figure 5 illustrates the action of the operational space force for
the intuitive case of Cartesian positioning tasks. The generalized force is then composed as
JT f. In the redundant case an additional term needs to complement the task term in order
to realize any arbitrary generalized force. We will refer to this term as the null space term
and it can be composed as N7 ,, where N7 is the null space projection matrix. An arbitrary
generalized force, 7, can then be expressed as,

T=J"f+N'1,=Mj+b+g 47
@Springer
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We can pre-multiply (47) by JM~' and rearrange to get,
X=JM ' J f+IJM 'N'r, — IM'b—JM g+ Jg (48)

where we note that X = J§ + J¢. We can now impose the condition that the term associated
with the null space, N7 ,, does not contribute to the operational space acceleration. This is
referred to as dynamic consistency [20] and is expressed as,

IJM'NTr, =M 'A=JT ™7, =0, V7,eR" (49)

We can solve for J# under this condition and denote this solution as J, the dynamically
consistent (right) inverse of J [20],

j — M—IJT(JM—IJT)—I (50)

This represents a unique right inverse of J where, by construction, the null space projection

. =T . . .
matrix, NT =1—J7J | is guaranteed not to influence the task acceleration. Under this
condition we can manipulate (48) to arrive at,

fF=UM D%+ M I UM b — Jg+ M) IM g (51)
This expresses the operational space dynamical equation,

S =Aag)x+ pq, q)+ plg) (52)

where A(q) isthe my x mp operational space mass matrix, p(q, §) isthe mr x 1 operational
space centrifugal and Coriolis force vector, and p(q) is the my x 1 operational space gravity
vector.

Alg) =M J")™!
g, ) = J' blq.§) — AJg
p@)=J @
I =AM

(53)

Thus, the overall dynamics of our multibody system can be mapped into task space using
=T

J .,

=T
T=Mj+btg > f=Ak+pu+p (54)

In a complementary manner the overall dynamics can be mapped into the task consistent null
space (or self-motion space) using N7 .

We can design the control for our system in task space coordinates using (52). Additionally,
we can specify the null space behavior of our system with the term N7 7,. The null space
control term is guaranteed not to interfere with the task dynamics of (52) due to the condition
of dynamic consistency. This allows for decoupled control design. Finally, the overall control
torque applied to the system is composed as in (47).
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4. Task and constraint symmetry

There are parallels between the structure of the constrained multibody dynamics problem, in
both the multiplier and minimization forms, and the operational space formulation. These par-
allels are derived from the common mathematical description used for tasks and constraints.
Both utilize a Jacobian representation (constraint matrix, ®, or task Jacobian, J).

Despite the common form used in specifying tasks and constraints, the mechanism by
which tasks and constraints are satisfied differs. Tasks are achieved by means of a control
input, whereas constraints are imposed by the physical structure of the multibody system.
Nevertheless, due to their common mathematical form there are similarities between the
structure of task dynamics and constrained dynamics.

Equation (39) provides a unique perspective into constrained dynamics. The projection
matrix, 7, filters out the component of the generalized force which acts in the direction of
the constraint force. That is,

Olr=1— <I>T<i>TT (55)

Consequently, only the component of the generalized force which influences the motion of
the system is preserved. Equivalent motion control [16] is produced by all choices of 7 which
differ by a vector lying in the im(®7 ). We also note that the complementary spaces defined
by im(®7) and im(O7) are orthogonal in a mass-weighted sense,

(®T, 07 - =M 'eT =0 (56)

Similarly, the projection matrix, N7, filters out the component of the generalized force
which produces acceleration in the task direction. That is,

Nr=r—JJ'r (57)

Consequently, only the component of the generalized force which influences the internal
self-motion of the system is preserved. We also note that the complementary spaces defined
by im(J Ty and im(NT) are orthogonal in a mass-weighted sense,

J' Ny =JM'NT =0 (58)

To summarize, in the case of constrained motion a projection matrix, O7, is used to
project the overall dynamics into the constraint null space. This preserves only the dynamics
which influences the constrained motion of the system. In the case of task space dynamics a
projection matrix, N7, is used to project the overall dynamics into the task null space. This
preserves only the dynamics which influences the task consistent self-motion of the system.
In this respect tasks can be viewed as rheonomic servo (control) constraints [1, 3, 29] which
enforce some motion control objective.

In addition to the symmetries between the constraint and task null space projection matrices
there are properties shared by the constraint matrix and the task Jacobian with regard to
the minimization of scalar “energy” measures (the Gauss function and the kinetic energy).
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Specifically, we can seek a solution to the kinematic relationship, J¢ = X, which minimizes
the kinetic energy,
1

T = EqTMq (59)

The solution to this constrained minimization problem is straightforward and yields,
G=M"JTIM ' JT) % (60)
Noting that the dynamically consistent inverse of J is given by,
J=M'J gMJTy! 61)

we have that ¢ = JX yields the kinetic energy minimizing solution of (43).
Similarly, we can seek a solution of the acceleration expression,

Ji=x-Jq (62)

which minimizes the acceleration energy, defined as the following mass-weighted quadratic
form,

Lop
74 Mg (63)

This yields,
G=M'JTUM I & - Jg) (64)

and we have that § = J(X — J§) yields the acceleration energy minimizing solution of (62).
The dynamically consistent inverse, J, of the task Jacobian therefore yields task consistent
solutions which minimize both the kinetic energy and acceleration energy of the system. This
is analogous to the manner in which the mass-weighted inverse, ®, of the constraint matrix
yields a constraint consistent solution which minimizes the Gauss function.
The symmetry between constraint dynamics and task dynamics will be exploited for the

purposes of control in the following section.

5. Constrained task-level control

In previous work the control of constrained systems has been examined from a configuration
space perspective, particularly with regard to contact control in robot manipulators [26, 27].
We will present an operational space methodology for addressing constrained systems, thus
providing a means of applying operational space control structures to these systems (see
Figure 6).

5.1. Direct task space mapping of constrained dynamics

This formulation involves directly mapping the generalized constrained equation of motion
(39) into operational space coordinates using the dynamically consistent inverse of the task
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Fig. 6 A multibody system with x(q)
loop constraints. The task
coordinates, X, are assigned to a
point on one of the links. The
objective is to control the
constrained system using
task-level commands

Jacobian. Alternately, we will make use of the constrained equation of motion in which

the Lagrange multipliers have been eliminated through the introduction of a minimal set

of independent coordinates (14). As with (39) this equation can be directly mapped into

operational space coordinates using the dynamically consistent inverse of the task Jacobian.
We begin by recalling the generalized constrained equation of motion (39),

O'r=Mj+b+g—®" (a+p) (65)
We can relate a set of task coordinates, X, to the set of generalized coordinates, ¢, by,
x=Jq (66)

Mapping (65) into any appropriate task space via the dynamically consistent inverse of J
yields,

7O =A@k + p(q. §) + p@) +(q) (67)
where,
Alg) = (IM 1 JTH™!
g, ¢) =T b—AJg

p)=1J'¢g (68)
y=-J"®"(@+p)
J = AJM!

In applying (67) it is important to note that actuation may not exist at all of the physical
joints described by the generalized coordinates. This is particulary true in the case of con-
strained systems such as parallel mechanisms where many of the joints are passive. We can
resolve this fact in our control by using a selection matrix. Given a selection matrix for the
actuated joints, S € R we can express (67) as,

J'O'S'ry = A+ p+p+y (69)
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where 7 = ST, and T is the k x 1 vector of generalized forces acting at the k actuated
joints. The matrix J T@T ST has dimensions of my X k.Thus,k > mr isanecessary condition
for the system to yield a solution of 7 for an arbitrary acceleration, X.

In practice we can design task motion control using estimates of the operational space
dynamic properties. This yields the following dynamic compensation equation,

JO'STr =Af +pa+p+4 (70)

where f* is the input of the decoupled system and we use the notation  to represent estimates
of various quantities. Any suitable control law can be chosen to serve as this input. In
particular, we can choose a linear control law of the form,

S =K,xg —x)+ K, (Xg — %)+ Xy (71

The procedure applied to (39) can also be applied to (14). In this case, however, the task
space mapping is associated with the minimal set of generalized coordinates, .. We begin
by recalling (14),

T, =My(q)§,+b,(q.9,)+8,(q) (72)
We can relate a set of task coordinates, x, to the coordinates, ¢ s by,
x=J4=J,(9)1q, (73)
where,
Jp(q@)=JC (74)

is the task Jacobian with respect to the minimal set of coordinates. We can map (72) into any
appropriate task space via the dynamically consistent inverse of J,,. This yields [31],

f=Ag)x+plq,q,)+ plq) (75)
where,

Ag) = (4, M;'T})"

. =T i
l'l’(qaqp) = prP _AJPqP

_T (76)
rig)=1J,8,
I, =AM,
We can express (75) in terms of the generalized forces,
Jom, =1,CTT =A%+ p+p (77
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Given a selection matrix for the actuated joints, S € RF*" we can express (77) as,
J,CTSTr = A+ p+p (78)

where 7, = CT+ =CT ST +,. The matrix ijTST has dimensions of my X k. Again,
k > mr is a necessary condition for the system to yield a solution of 7 for an arbitrary
acceleration, X.

Using estimates of the operational space dynamic properties we have the following dy-
namic compensation equation,

=T A . A

J,C'S"re=Af +p+p (79)
where f* can be given by (71).
5.2. Task/constraint partitioning of dynamics
In this formulation the multiplier form of the constrained equation of motion (7) is mapped into
operational space using the dynamically consistent inverse of a Jacobian which characterizes
both task and constraints [8]. The resulting operational space equation is then partitioned
into an equation corresponding to task motion control, and an equation corresponding to

constraint forces.
We begin by recalling the multiplier form of the constrained equation of motion (7),

T+ AN=Mj+b+g (80)
Again, we can relate a set of task coordinates, X, to the set of generalized coordinates, ¢, by,
x=Jgq 81)

in addition to the constraint condition,
d=d4=0 (82)

We can concatenate (81) and (82) into a single vector,

‘- (%) _ (é) _Jq (83)

where we use the notation ™ to represent a quantity that is formed from the composition of
task and constraint terms.

The active generalized force can be decomposed into a task space component and a null
space component as in (47),

T:ij+NT70:(JT§>T)<f>+N T, (84)
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where f - is the component of the applied operational space force acting along the constraint
direction. Equation (80) can thus be written as,

jT<f>+NTTO+jT(0>:Mq+b+g (85)
fe A

We can now map (85) into operational space using the dynamically consistent inverse of J.
This yields,

(;;>+<g>=A(q)<§>+;1(q,q)+la(q) (86)

where the constraint condition, qS = 0, has been imposed. We have the following definitions,

. N JM—IJT JM_IQT -1
Alg) = 14T “1gT
M M@
v NN { JM—lb_Jq

. (IM g
v é A
p(q) <<1>M1g)

While (86) expresses the combined task-constraint dynamics of our system it is useful to
partition the dynamics in the following manner,

f 0 Ay Ap) (% o p
R SV N ) R v RV
From this partitioning we have an equation corresponding to task motion control,
f=Aux+ i + p, (39)
and an equation corresponding to constraint forces,
fe+X= Rk +fi, + p, (90)

The constraint force vector, A, will always arise so as to satisfy (90), as dictated by con-
straint consistency. The component of applied operational space force, f, acting along the
constraint direction has no impact on the motion control of the task. Its only effect is on the
constraint forces (values of A) that arise. Thus, all choices for f - result in equivalent motion
control of the system [16]. However, specific choices can be made to optimize the control
with regard to desired constraint forces or to account for certain joints being unactuated. As
an example of the latter case we may impose the condition that certain joints are unactuated.
The following condition expresses the absence of actuation at those joints,

SUJ'f+@" fo)=0 1)
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Fig. 7 An operational space
tracking controller for a
constrained system. The desired Controller
task is tracked using appropriate
dynamic compensation which
accounts for the constraints. The
terms 7, and f. are chosen as
part of the overall control design.
An active applied torque is
delivered to the plant

f,

where § € R®=0*" ig a gelection matrix for the unactuated joints. That is, S selects the unac-
tuated joints from the overall generalized force vector. Equation (91) would thus complement
(89) and (90).

Using estimates of the operational space dynamic properties we have the following dy-
namic compensation equation,

fF=Auf + i+ b 92)

where f* can be given by (71). The constraint force control term, f., can be resolved by
using,

fe+ A=A f + i, + b, (93)

in the case that the control is chosen with regard to optimizing the resulting constraint forces,
or, by using (91) in order to account for certain joints being unactuated. Figure 7 depicts
an operational space tracking controller for a constrained system based on this partitioning
approach.

5.3. Conditions on motion control

Figure 8 illustrates the necessary conditions for fully controlling the multibody system with
respect to the system degrees of freedom and the task coordinates. For the system to be motion
actuated the number of actuators must equal or exceed the number of degrees of freedom, p.
For the system to be fask actuated the number of actuators must equal or exceed the number
of task coordinates, mr.

There are other conditions in addition to those stated above. Regarding task actuation,
in the first formulation of Section 5.1 the matrix J r ©7T ST must be full rank. Similarly, in
the second formulation of Section 5.1 the matrix J,C” S” must be full rank. Finally, in the
formulation of Section 5.2 the matrix S®” must be full rank.
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Fig. 8 The relationship between -
the number of generalized =
coordinates — n, degrees of - p > E-f.. Me B

freedom — p, constraints — mc,
task coordinates — m 7, and null < My ><— N —>
space coordinates — N. The

: ; task
system is task actuated if - > 4,_{
k 2 my actuated

k > mr and motion actuated if

k > p where k is the number of k> motion
actuators =P actuated

5.4. Examples

n >

The following examples focus on task motion control of constrained systems using the control
decomposition that has been presented in Section 5.2.

5.4.1. Redundant chain with internal constraints

A redundant serial chain mechanism is depicted in Figure 9. We will impose constraints
between the first three joints. These can be thought of as either servo constraints, if they
are enforced by the controller, or constraints associated with the structure of the mechanism
itself. The later case could, for example, correspond to a geared transmission (not shown in
the figure) in which the second and third joints are coupled to the first joint. As an example
of this we could specify the following set of constraint equations,

a2 — 1/3q:
= 94
o(q) s — 23, (94)

We now define a task to control the terminal point of the chain; that is, x £ r ;. This represents
an actual rheonomic servo constraint since it will be enforced by the controller. In this case
the component of applied operational space force, f, acting along the constraint direction
will be chosen to be zero. If we interpreted the constraints in (94) to be servo constraints

Xy X

S T - / X
4
9s
t g5
l ds ‘?f
E
d 2
kinematic %
coupling J G5 2.5
_ Ma, X
0 400 800 1200 1600

time (ms)

Fig. 9 (Left) Redundant chain with internal joint constraints. The constraints kinematically couple the first
three joints. The terminal point of the chain is being controlled. In this case n = 6, mr =2, and m¢ = 2.
(Right) Time response of the task coordinates. The control gains are K, = 100, K, = 20, and Ky = 0.1
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Fig. 10 (Left) Time response of first three joints for the constrained redundant chain. Constraints are enforced
consistent with (94). (Right) The 2-dimensional null space is being controlled to minimize gravity effort,

U =|g(q) H2. The null space term, —Ky N VU, executes a task and constraint consistent minimization

they would be incorporated into x rather then ¢. This would change the control torques since
the constraints would be enforced by the controller rather than the internal structure of the
mechanism.

The 2-dimensional null space is controlled to minimize the gravity effort, defined as
U 2 | g(¢g)|%. Our control torque is then,

T oU
T:JTf—KNNTa— (C8)
q

where f is given by (92) and K is a null space gain. All joints are assumed to be actuated
so no selection matrix needs to be introduced. Simulation plots for the system under a goal
position command are shown in Figures 9 and 10. A linear (PD) control law is used as the
input of the decoupled system (71). A small amount of damping was applied in the null
space to damp out oscillations. In Figure 10 we note that the gravity effort is minimized in a
manner consistent with the task and constraints. We also see that the time histories of the first
three joint torques exhibit some spikes due to the rapid and drastic changes in configuration
induced by the gravity effort minimization.

5.4.2. Mechanism with loop closures

A parallel mechanism is depicted in Figure 11. The constraint equations describe the loop
closures and are given by,

rp, —1y
og)=|rp—ry, (96)
Fpy — Ty

The task is defined to control the active elbow joints; that is, x £ (¢2 ¢4 gs)". This
corresponds to,

01 0000 0 0 O
J=]0 0 0 1 0 0 O O O 97
0 0 0O0OO 1 0 0 O
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Fig. 11 (Left) Parallel mechanism consisting of serial chains with loop closures. The three elbow joints are
actively controlled while the remaining joints are passive. (Right) The orientation of the platform is commanded
to rotate while its center is to remain fixed. In this case n = 9, m7 = 3, m¢c = 6,and k = 3

Due to the passive nature of all other joints the component of active force, f, acting along
the constraint direction is chosen to be zero. This can be derived from the condition of (91),
where,

1 0 0 000 0 O O

0 01 0 0 0 0 0 O

B} 00 001 0 0 0 O
S = (98)

0 00O OO O 1 0 O

0 00O O O 0 1 O

0 0 00O O 0O 0 0 1

Since SJTf =0,

fe=—8®H 81T fF=0 (99)

There is no null space in this particular example so our control torque is givenby 7 = J7 f,
where f is given by (92). Figure 12 shows simulation plots for the system under a goal position
command. A linear (PD) control law is used as the input of the decoupled system.

In a second case we will define the task to control the position and orientation of the
platform (see Figure 11); that is, X 2 (g7 gg qo)". In this case f # 0 since SJT f # 0.
The orientation is commanded to rotate while the center of the platform is commanded to
remain fixed. A linear (PD) control law is used as the input of the decoupled system. Figure
13 shows simulation plots for the system under a goal position command.

5.4.3. Underactuated redundant chain

A redundant serial chain with an unactuated joint is depicted in Figure 14. The task is defined
to control the terminal point of the chain, that is X £ r. Since the number of actuators,
k = 2, is less the number of degrees of freedom, p = 3, the system is under-actuated with
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Fig. 12 (Left) Time response of the elbow joints moving to a goal. (Right) Time response of the control
torques during goal movement. Zero control torque is produced at the passive joints. The control gains are

K, = 100 and K, = 20

0
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%D -30 g
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\/TT/ passive joints—/
-50
-20
Ty
-60
0 400 800 1200 1600 0 400 800 1200 1600
time (ms) time (ms)

Fig. 13 The orientation of the platform is commanded to rotate while its center is to remain fixed. (Left) Time
response of the platform orientation. (Right) Time response of the control torques during goal movement.
Zero control torque is produced at the passive joints. The control gains are K, = 100 and K, = 20

®T:
tﬂ
e
lg
Xy Xy o %
4
i

600 800

time (ms)
Fig. 14 (Left) Under-actuated redundant chain. Joint 1 is unactuated (passive). In this case n = 3, k = 2,

and mr = 2. (Right) Time response of the task coordinates for the under-actuated system moving to a goal
location. The control gains are K, = 100 and K, = 20
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Fig. 15 (Left) Time response of the joint angles for the under-actuated redundant chain showing undamped
null space oscillation due to the unactuated joint. (Right) Time response of the control torques during goal
movement. Zero control torque is produced at the passive joints. The control gains are K, = 100 and K, = 20

respect to configuration space but sufficiently actuated with respect to the task dimension,
my = 2. With joint 1 unactuated we have,

§=(1 0 0) (100)

Simulation plots for the system under a goal position command are shown in Figures 14
and 15. A linear (PD) control law is used as the input of the decoupled system. The time
response of the joint angles shows undamped null space oscillation due to the unactuated
joint.

6. Inclusion of flexible bodies

The previous sections have detailed the control of constrained multibody systems where the
bodies are rigid. These methods can be extended to handle constrained systems involving
a mix of flexible and rigid bodies. The method of absolute nodal coordinates described by
Shabana [32] has a demonstrated efficacy in application to flexible/rigid multibody systems.
Using this method the flexible subsystems are described using finite element nodal coordinates
with respect to an absolute global coordinate system. For the rigid body subsystems we can
choose generalized coordinates that describe relative joint motion. Coupling the flexible and
rigid subsystems together results in a constrained dynamical system with graph topology.

The approaches presented in the previous sections offer a natural means of addressing the
control of such systems. In this case the generalized coordinates consist of passive coordinates
(finite element nodes) and active coordinates (actuated joints). The objective is to control
certain rigid body coordinates as well as certain flexible body coordinates in order to achieve
an overall task objective (see Figure 16). It is noted that there may be certain limitations
regarding the degree to which the flexible coordinates can be controlled. This will be discussed
in Section 6.3.

6.1. Flexible body dynamics

Kiibleretal. [21, 22] provide an excellent description of the absolute nodal coordinate method
with regard to flexible/rigid multibody systems. A brief review is presented here.
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Fig. 16 A rigid/flexible flexible
multibody system with body
constraints between the bodies. A
set of nodal displacements are
assigned as the task coordinates

task nodal
coordinates

Fig. 17 Isoparametric elements showing the mapping from the intrinsic parameter space, &, to the physical
space, X. (Top) An 8 node hexahedral element (Bottom) A higher order 27 node hexahedral element

For a given flexible body subsystem a Lagrangian or material description is chosen which
relates all quantities to the reference configuration, X, of the system with domain €2,. Using
a nonlinear finite element approach a set of shape or interpolating functions, {Ny, ..., N},
associated with a particular finite element discretization of s nodes can be chosen.

In the case of 8 node isoparametric hexahedral elements (see Figure 17) the interpolating
functions are given as [15],

Na(§) = %(1 +&5 A +nmA+8¢) fora=1,2,...,8 (101)
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where € = (£ n ¢ )7 are the coordinates of the intrinsic element parameter space. For the
higher order 27 node hexahedral element, Lagrange polynomials can be used to construct
the interpolating functions [15]. Defining the shape matrix, N € R3*3,

NN O 0 -~ N, O 0
N2lo N O -~ 0 N, 0 (102)
O 0 N --- 0 0 N,

the displacement field, u(X, t) € R3,is givenby u = Nd,whered € R3S is the vector of nodal
displacements. The current material configuration is then given by x(X, ) = X 4+ u(X, t).
The weak form statement (summation convention applied) of the elastodynamics problem
is,

de(MjkéZk+kj+gj)=0 (103)

where,

My :/ PoNijNidV
Q,

8Nl»/ oN;;
S —d; | S;dV
/&;4, 90X, ( il + X, k) Ik

Q, 92,

kj

The term p, is the material density field in the reference configuration, b; are the body forces
(eg. gravity), p; are the surface forces, §;; is the Kronecker delta, and S is the second
Piola-Kirchoff stress tensor. The system can thus be stated as,

Md+k+g=0 (105)
or more generally as,
Md+k+g=f (106)

where f € R* is a vector of external control forces applied at the nodes. The terms
M e R¥*3 ke R, and ge R3S are the mass matrix, stiffness vector, and body/surface
force vector respectively. It is noted that due to integration with respect to the reference
configuration, €2,, the mass matrix, M, is constant. The stress tensor, S, is highly nonlinear
however.

Different constitutive models can be applied. In particular, viscous effects are important
for some systems. Structural damping models are discussed in [22], however we will not
consider these detailed constitutive models since it is assumed that the basic mathematical
structure of (106) can still be achieved with these models. For the remainder of this section
we will focus on the mathematical structure of (106) rather than the constitutive specifics of
the terms.
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6.2. Subsystem assembly

We can assemble a set of rigid and flexible subsystems into single constrained system. First,
we specify the dynamics of a set of y unconstrained rigid body subsystems,

T = M’lql +b +gr|

(107)
Ty = M‘Qy +by +gry

Next, we specify the dynamics of a set of z flexible subsystems which have been discretized
using absolute nodal coordinates,

fl = M/ldl +k1 +gfl
(108)

fz:Mﬁdz + k. +gf:

The sets of equations given by (107) and (108) can be assembled into a single system equation
of the form,

r=Mj+b+g (109)
where,
M = diag(M,,, , M., Mg, . M)
= (] T 4T M)
i=G" - § d - dl) (110)
b= (b b KT k)"
g=(g - g g - &)

We have M € R"*" and T, ¢, b, g € R" where,

Y

:; Znﬁ

ng, = 3s;
(111)
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Imposing a set of m¢ holonomic constraint equations to establish system connectivity yields
the familiar equation,

T=Mj+b+g—®' (112)
subject to,

G +Pg=0 (113)

6.3. Control issues

We can apply the same control methodology to the constrained flexible/rigid multibody
system described in Section 6.2 that was applied to the constrained rigid multibody system
addressed earlier in this paper. A number of issues need to be recognized however. Typically,
flexible body subsystems will be passive. That is, there will be no control forces, f, applied
at the nodes. While a selection matrix, S, can be used to specify the actuated coordinates, the
rank conditions given in Section 5.3 must still be satisfied (in addition to the condition on the
number of actuators) to control the task nodal coordinates. Satisfying these rank conditions is
problematic because the nodes in the flexible body subsystems are not kinematically coupled,
as the bodies in the rigid body subsystems are, but rather elastically coupled. Sparseness of
the mass matrices and task Jacobians of the flexible body subsystems is a consequence of
this lack of kinematic coupling.

In rigid body systems, kinematic coupling allows a desired acceleration at the task control
point to be achieved despite the lack of actuation at certain joints. This can be realized by
recalling (69),

J'OTS' 1y =AX+p+p+- (114)

The matrix J "©” ST must be full rank for there to be solution of actuator generalized forces to
achieve an arbitrary task acceleration, X. Kinematic coupling results in a dense task Jacobian
and mass matrix, whereas elastic coupling in flexible systems results in a sparse task Jacobian
and mass matrix. In this case, if the actuated nodal coordinates do not correspond to the nodal
coordinates that constitute the task then the term J "©7 ST will be rank deficient. While this
fact precludes finding a control input to achieve the desired task nodal accelerations at a
given instant, control inputs may still exist that achieve the desired task nodal displacements
in static equilibrium.

An additional consideration is that the task nodal displacements will typically be comprised
of large rigid body displacements and small material deformations. As a practical matter if
the specified desired nodal displacements involve large deformations the elastic forces will
be large and the corresponding control input will be prohibitively large, particularly for stiff
materials. Finally, it should be emphasized that applying this in an actual control system for
a flexible/rigid multibody system requires sensing at the nodes of the flexible bodies.

7. Summary and conclusions

In this paper we have presented a task-level methodology for the control of constrained
multibody systems. This methodology exploits the natural symmetry between constrained
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dynamics and task space dynamics to synthesize dynamic compensation which properly
accounts for the system constraints while performing a control task. The presence of passive
joints in the constrained system has also been accommodated. A set of examples demonstrated
the efficacy of this methodology in simulation. As a practical matter it is assumed that the
controller has access to the system state (via a forward dynamics solver in the simulated case
or via sensors in the physical case) and estimates of the dynamic properties of the physical
system.

Application to flexible/rigid multibody systems was also addressed. The absolute nodal
coordinate method can be used to describe the flexible bodies in conjunction with generalized
coordinates that describe relative joint motion for the rigid bodies. A standard assembly
procedure can be employed and connectivity constraints imposed to form a constrained
flexible/rigid multibody system. The task-level control approaches presented here can then
be applied in the same manner as with constrained rigid multibody systems. Since the nodes
describing a flexible body are typically passive and elastically coupled there are limitations
in controlling flexible body nodes as part of the task however. This is in contrast to passive
joints between kinematically coupled rigid bodies.

The task-level constraint based control methods addressed here can be applied to mo-
tion control which involves contact with the environment. A particular application area for
this is locomotion in robotic systems. The contact kinematics associated with intermittent
foot/ground contact during gait can be modeled using constraints, as was done by Schiehlen
[33]. The robot controller can thus employ a constraint based approach where transitions
between different contact conditions can be detected and accommodated. This approach is
applicable to a host of tasks outside of locomotion and represents a general methodology for
constrained motion control.
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