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Abstract

This article introduces a new method to represent bone surface geometry for simulations of joint contact. The method uses the inner
product of two basis functions to provide a mathematical representation of the joint surfaces. This method guarantees a continuous
transition in the direction of the surface normals, an important property for computation of joint contact. Our formulation handles
experimental data that are not evenly distributed, a common characteristic of digitized data of musculoskeletal morphologies. The
method makes it possible to represent highly curved surfaces, which are encountered in many anatomical structures. The accuracy of
this method is demonstrated by modeling the human knee joint. The mean relative percentage error in the representation of the
patellar track surface was 0.25% (range 0}1.56%) which corresponded to an absolute error of 0.17 mm (range 0}0.16 mm). ( 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Accurate mathematical descriptions of articular surfa-
ces are essential in biomechanical models because surface
errors can propagate to generate large errors in kinetic
and kinematic simulations. To avoid such errors, both
geometric and natural compatibility conditions should
be met in simulations that include joint contact. The
geometric compatibility condition assures that the dis-
tance between the contact points on the two surfaces is
zero (i.e., penetration is avoided). The natural compatibil-
ity condition assures that the normals to the surfaces
at the point of contact are collinear. Failure to ade-
quately address these conditions can compromise the

accuracy of biomechanical simulations that include sur-
face contact.

Three methods are available that provide mathemat-
ical description of articular surfaces. The "rst method
uses two-dimensional polynomials to represent bone sur-
face geometry (Wismans et al., 1980; Engin and Moein-
zadeh, 1982; Blankvoort et al., 1991; Tumer and Engin,
1993). While two-dimensional polynomials are reason-
ably accurate, small errors in the surface "t can create
penetration of the two objects in contact and result in
multiple contact points. This results in trajectories of the
contact point locations that are discontinuous with joint
motion. The second method uses polygons to represent
bone surfaces (Delp and Loan, 1995). Although poly-
gonal models of bone surfaces provide an acceptable
visual representation of bone geometries, the natural
compatibility condition is not necessarily satis"ed. Since
the contact polygons from the two surfaces are not neces-
sarily coplaner, collinearity of the normals at the contact
point is not guaranteed. The third method, parametric
surface patches, is frequently used to represent bone
surfaces (Ateshian et al., 1991; Hirokawa, 1991). As de-
scribed in Scherrer and Hillberry (1979), each of the
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Fig. 1. Representation of the patellar track geometry. The femoral
coordinate system (x, y, z) is constructed such that the origin of the
coordinate system is located at the midpoint of the line between the
medial and lateral epicondyles. The surface geometry is partitioned into
two sub-surfaces (X(x,y) and X(x,z)) using a plane de"ned as z"Z

r
. The

(x
r
, y

r
, z

r
) is an arbitrary point located on the X(x,y) sub-surface of the

patellar track. the (x
p
, y

p
, z

p
) is an arbitrary point located on the

partitioning curve, ¸, between the X(x,y) and X(x,z) sub-surfaces.

surface patches is bounded by four di!erent cubic splines.
Coe$cients of the cubic splines for all patches are com-
puted so any two adjacent patches are continuous in the
zeroth derivative, the "rst derivative, and in the cross-
derivatives at each of the common corner points. There is
no error in the representation at the corners; however,
errors are possible for points at other locations on
a patch (Scherrer, 1977). For example, the cross-deriva-
tives are usually set to zero (Hart, 1974; Almond, 1991),
which degrades the accuracy of representation within
a patch. Since there is no guarantee that the errors are
uniform within a single patch, or across patches, the
continuity of the tangent vectors is not guaranteed. Thus,
evaluation of the normal vector (computed as the cross
product of the two tangent vectors) at two successive
points would not produce a continuous transition in the
direction of the surface normals, resulting in a discon-
tinuous contact points in simulations of joint contact
(Hefzy and Yang, 1993).

Given the limitations of these previous approaches,
Ateshian (1993) introduced the use of B-splines to create
geometric models of articular surfaces. The control
points of the B-spline were computed from a rectangular
grid of points. Any missing points not speci"ed within
a rectangular grid were computed with an extrapolation
method (Akima, 1978). However, as Akima (1978) ac-
knowledges, the accuracy of this extrapolation grid is
questionable. A B-spline formulation that eliminates the
use of Akima's method was presented by Ateshian (1995).
This important improvement is not without limitations:
the method may not represent highly curved surfaces and
requires that the digitized anatomy be regularly distrib-
uted. In the present paper, we build on this background
and attempt to circumvent these limitations by comput-
ing the control points of the B-splines from data that are
not necessarily placed in a rectangular grid. We also
expand the formulation to represent highly curved surfa-
ces, such as the patellar track. Our method insures con-
tinuous transition in the direction of the surface normals
(i.e., natural compatibility) even when a slight error is
associated with the representation.

2. Methods

Our method employs the products of basis functions to
represent three-dimensional surfaces, similar to the
mathematical formulation proposed in Hayes and Halli-
day (1974). The basis functions used here, B-splines, were
chosen to provide a representation that is continuous to
the second derivative and is easy to evaluate. The form of
the B-splines chosen is based on the early work of Halli-
day et al. (1972). Our formulation solves the equations by
singular value decomposition, which is well suited to
situations in which the experimental data are not conve-
niently distributed. We address the limitation of the B-

splines to model highly curved surfaces by partitioning
the data to insure that the functions are single valued and
then providing a formulation that guarantees continuity
across the partitioning boundary.

The knee joint articular surfaces were derived from the
digitized transverse contours of the visible human right
knee joint (Visible Productions, Ft. Collins, Co.). A local
coordinate system was established for each of the bones.
The origins of the femoral and tibial coordinate systems
were located at the midpoint of the line between the
medial and lateral femoral epicondyles and the medial
lateral tibial condyles, respectively. The origin of the
patellar coordinate system was located at the centroid of
the patella. In all three coordinate systems, the medial (x),
posterior (y), and superior (z) directions were chosen to
be positive and were assumed to be parallel to a global
coordinate system. In the global coordinate system, the
(x, z) plane was de"ned as the coronal plane and the (y, z)
plane was de"ned as the sagittal plane. Digitized data of
the articular surfaces were normalized to local anatom-
ical dimensions of the di!erent bones (Mensch and Am-
stutz, 1975). Although all the contact surfaces of the knee
joints (the tibiofemoral and patellofemoral joints) were
"tted using our method, the femoral surface of the patel-
lofemoral joint surface will be used to illustrate the sur-
face-"tting problem.

The geometry of the patellar track was partitioned into
two sub-surfaces (X(x,y) and X(x,z)) using a plane de"ned
as z"Z

c
(Fig. 1). Partitioning the surface geometry into

two meshes insures a single-valued representation in two
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Fig. 2. A typical set of B-splines, X
i
(x), X

i`2
(x), X

i`4
(x), and an illus-

trative example for an evaluation of a spline at a given x
r
. The set

ax
i
, ax

i`1
, 2, ax

i`4
represents the knots that correspond to the X

i`4
(x)

B-spline.

of the three spatial variables. The choice of the basis
functions in the three directions, x, y, and z, is determined
such that the function and its "rst and second derivatives
are continuous. The sub-surface X(x,y) is represented in
terms of an (x, y) mesh and X(x,z) is represented in terms of
an (x, z) mesh. Each mesh is de"ned in terms of a set of
knots am in both directions as de"ned below

am"[am
~3

am
~2

am
~1

am
0

am
1
2am

Km
am
Km`1

am
Km`2

am
Km`3

]. (1)

The superscript (m) is a general identi"er for the di!erent
directions, x, y, and z, and am

1
is chosen such that its

elements are monotonically increasing (am
l`1

'am
l
). The

subscript (K
m
) in Eq. (1) is the total number of knots used

in the corresponding direction. Each of the knot values is
computed from the previous value with an increment
Dm"am

l`1
!am

l
; l"0, 1, 2, 2, K

m
. The values of am

0
and

am
Km

are chosen to be the minimum and maximum data
points of the corresponding direction. The sets of aug-
mented knots am

~3
am
~2

am
~1

and am
Km`1

am
Km`2

am
Km`3

can
be chosen arbitrarily.

The general surface representation, of both sub-surfa-
ces, in terms of sets of basis functions in two di!erent
directions takes the form

GX(x,y) : z"
Kx`4
+
i/1

Ky`4
+
j/1

C(x,y)
ij

X
i
(x)>

j
(y), z)Z

cH, (2)

GX(x,z) : y"
Kx`4
+
i/1

Ky`4
+
j/1

C(x,z)
ij

X
i
(x)Z

j
(z), z'Z

cH, (3)

where X
i
(x),>

j
(y) and Z

j
(z) are basis functions, C(x,y)

ij
and

C(x,z)
ij

are the corresponding set of coe$cients, and
K

m
(m"x, y, z) are the number of pre-speci"ed knots

along the x, y, and z directions, respectively. One possible
set of basis functions that would insure C2 continuity,
suggested by Hayes and Halliday (1974), is the third-
order B-spline. The general B-spline in the x-direction is
given as

X
i
(x)"

4
+
k/0

cx
ik
(x!ax

k~i
)3H(x!ax

k~i
), (4)

where

cx
ik
"A

4
<
r/0
rEk

(ax
i~k

!ax
i~r

)B
~1

A
6(ax

i~2
!ax

i~4
)(ax

i
!ax

i~2
)

(ax
i
!ax

i~4
) B

(5)

H(x!ax
k~i

)"G
1, x*ax

k~i
,

0, x(ax
k~i

,
(6)

where cx
ik

is a set of B-spline coe$cients computed from
a pre-speci"ed set of knots, ax

i
; i"1, 2, K

x
, which are

pre-computed before the "tting procedure is evaluated.
The second term on the right-hand side of Eq. (5) is
a normalization factor that insures a maximum B-spline

value of one (Halliday et al., 1972). By de"nition, X
i
(x) is

zero everywhere except in the range ax
i~4

(x(ax
i

(see
the X

i`4
(x) spline given in Fig. 2 as an example). Hence,

for any x, say x
r
(ax

i
, there are only four basis functions

of non-zero values at x
r
as illustrated in Fig. 3. Forms of

B-splines in the other directions can be attained by re-
placing x with y or z in Eqs. (4) through (6).

The functional representation of Eqs. (2) and (3) can be
used to evaluate the normal vector at any point on the
surface. It can be shown that the normal unit vector is
given as

n(x,y)"C
Kx`4
+
i/1

Ky`4
+
j/1

C(x,y)
ij

)
dX

i
(x)

dx
)>

j
(y),

Kx`4
+
i/1

Ky`4
+
j/1

C(x,y)
ij

)X
i
(x) )

d>
j
(y)

dy
,!1D

T
/DzD, (7)

n(x,z)"C
Kx`4
+
i/1

Kz`4
+
j/1

C(x,z)
ij

)
dX

i
(x)

dx
)Z

j
(z), !1,

]
Kx`4
+
i/1

Kz`4
+
j/1

C(x,z)
ij

)X
i
(x) )

dZ
j
(z)

dz D
T
/DzD, (8)

where DzD represents the magnitude of the numerator
vector and the superscript T means &transpose'. The con-
tinuity of the B-spline's "rst derivatives insures a smooth
evaluation of the surface normals given in Eqs. (7) and (8).

Consider, for simplicity, only one of the patellar track
sub-surfaces given in Eqs. (2) and (3), say X(x,y). Let z

r
be

given at points (x
r
, y

r
), r"1, 2, 2, n, which are shown in

Fig. 1. The goal is to compute, using Eq. (2), the coe$-
cients C(x,y)

ij
from the given values of x

r
, y

r
, and z

r
.

Substituting each data point into Eq. (2) and using the
de"nition of the B-spline given in Eqs. (4) and (5), the set
of the observation equations can be written as follows:

Kx`4
+
i/1

Ky`4
+
j/1

C(x,y)
ij

X
i
(x

r
)>

j
(y

r
)"z

r
; r"1, 2, 2, n. (9)
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Fig. 3. (a) Relative percentage error versus a randomly selected set of
(x, y) points in the X(x,y) sub-space of the patellar track. The relative
percentage error was computed with Eq. (14) with K

x
"K

y
"10,

Dx"0.0528, Dy"0.0573, ax
0
"!0.349, ay

0
"0.621, ax

Kx
"0.232, and

ay
Kr
"0.00899 used in the calculation of g(x,y) (see text for de"nitions);

(b) Relative percentage error plot versus a randomly distributed set of
data points on the patellar track. The relative percentage error was
computed with respect to the estimated z values for n data points;
(c) The dot product between the normal vectors computed with the full
data set (n points) and with half (n/2), a quarter (n/4), a sixth (n/6), an
eighth (n/8), and a tenth (n/10) of the data set evaluated at an arbitrary
set of data points. As the relative percentage error increases in (b) the
misalignment of the normal also increase.

To compute C(x,y)
ij

in the above equation, the set of
equations are "rst represented in a matrix form as fol-
lows:

Ag(x,y)"z6 , (10)

where

z6 "[z
1
, z

2
, 2, z

n
]T

g(x,y)"[C(x,y)
1l

, 2, C(x,y)
1(Kx`4)

, C(x,y)
2l

, 2, C(x,y)
2(Kx`4)

, 2,
C(x,y)

(Ky`4)l
, 2, C(x,y)

(Ky`4)(Kx`4)
]T

and A contains the values of the inner product X
i
(x)

>
j
(y) for all points in the mesh.
It is clear from the above formulation that A is a rec-

tangular matrix of n rows and (K
x
#4)(K

y
#4) columns.

One possible way to solve this problem is to multiply
both sides of Eq. (10) by AT, rewriting Eq. (10) as
ATAg(x,y)"ATz6 . Since, in general, a nonsingular ATA is
not guaranteed, we propose a least-squares solution of
Eq. (10) that minimizes DDAg(x,y)!z6 DD

2
and is given by

g( (x,y)"A`z6 , (11)

where A` is the generalized inverse of A. The generalized
inverse of A can be represented in terms of M, K, and
N as follows (Ortega, 1987):

A`"NKMT (12)

K"C
diag (1/p

1
, 1/p

2
, 2, 1/p

1
) 0

0 0D3R(Kx`4)(Ky`4)Cn,

(13)

where l is the rank of A, p
1
'p

2
'2'p

l
'0, are the

singular values of the matrix A, and N3R(Kx`4)(Ky`4)

and M3Rn are unitary matrices and are computed from
the eigenvalues and the associated orthonormal eigen-
vectors of ATA (Ortega, 1987). If the rank of
A"(K

x
#4)(K

y
#4), Eq. (10) has a unique solution and

A`"A~1. If the rank of A((K
x
#4)(K

y
#4), the solu-

tion given by Eq. (11) is the best solution of Eq. (10) in
a least-squares sense.

To test the accuracy of the model, the data set was
randomly divided into two sets. The "rst set was used to
compute the model while the second set was used to
compare the model-predicted positions to the actual
digitized data. The random selection of data points is
also used to simulate the irregular distribution of the
experimental data encountered in actual experimental
set-ups.

Speci"cally, after computation of C(x,y)
ij

, the accuracy of
the basis function representation was tested by compar-
ing the estimated values with the measured values for all
the points in the set that were not used in the calculations
of C(x,y)

ij
. To illustrate this, (x, y) mesh of the patellar track
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surface (Fig. 1) was used and the relative percentage
error in the estimation of the z coordinates of points
in the (x, y) mesh was computed with the following
equation:

Relative Percentage Error"
Dz
r
!z(

r
D

Dz
r
D

]100, (14)

where z
r

is the actual z-coordinate and z(
r

is the corre-
sponding estimated z-coordinate computed with Eq. (2)

The dependence of the mathematical representation on
the number of points used to create the surface was
evaluated. The increase in relative percentage error and
the change in the direction of the surface normal were
computed as the number of points used to create the
surface (n) was reduced. The number of points was re-
duced to n/2, n/4, n/6, n/8, and n/10. Without loss of gen-
erality, the error was evaluated for a set of arbitrary data
points, (x

a
, y

a
, z

a
) that lie in the X(x,y) sub-surface of the

patellar track geometry (Fig. 1). The procedure starts
with the computation of C(x,y)

ij
, following the method

described above. For each of the computed C(x,y)
ij

, esti-
mated values of the z-coordinates of the arbitrary data
set, z(

a
, were obtained using Eq. (2). The associated nor-

mal vectors were also computed for each C(x,y)
ij

using
Eq. (7). The estimated positional data, z(

a
, were then

compared to the true coordinates z
a
. As a measure of

smoothness, the dot products of the normal vectors ob-
tained using n data points and fewer points
(n/2, n/4, n/6, n/8, and n/10) were computed.

To insure continuity across the partitioning boundary
between the X(x,y) and X(x,z) sub-surfaces, the intersection
curve ¸ in Fig. 1, a set of equality constraints are imposed
on the calculation of C(x,z)

ij
of Eq. (3). Since Eq. (2) is valid

for all z)Z
c
, the continuity of the representation of the

X(x,y) sub-surface at z"Z
c
is guaranteed. Following the

procedure used to compute C(x,y)
ij

, the matrix equation
used to calculate C(x,z)

ij
can be written in the following

form:

AM g(x,z)"y6 , (15)

where

y6 "[y
1
, y

2
, 2, y

n1
]T

g(x,z)"[C(x,z)
1l

, 2, C(x,z)
1(Kx`4)

, C(x,z)
2l

, 2, C(x,z)
2(Kx`4)

, 2,
C(x,z)

(Kz`4)l
, 2, C(x,z)

(Kz`4)(Kx`4)
]T

and AM contains the values of the inner product
X

i
(x) )Z

j
(z) for all points in the mesh, (x

l
, y

l
, z

l
), l"

1, 2, 2, n
l
. If (x

p
, y

p
, z

p
"Z

c
), p"1, 2, 2, k, is the set

of data points at the intersection curve ¸ between the two
sub-surfaces, then the coe$cient vector g(x,z) can be com-
puted subject to the following constraint:

A11 g(x,z)"yNN , (16)

where

yNN "[y
1
, y

2
, 2, y

k
]T

g(x,z)"[C(x,z)
1l

, 2, C(x,z)
1(Kx`4)

, C(x,z)
2l

, 2, C(x,z)
2(Kx`4)

, 2,
C(x,z)

(Kz`4)l
, 2, C(x,z)

(Kz`4)(Kx`4)
]T

and A11 contains the values of the inner product
X

i
(x) )Z

j
(z) for all points on the intersection curve

¸, (x
p
, y

p
, z

p
"Z

c
), p"1, 2, 2, k.

By the use of Lagrange multipliers, j, the required
solution of Eq. (15) subject to Eq. (16) requires the solu-
tion to the equation

C
A1 F A11

2 F 2

A11 F 0 D
hggiggj

B

C
g(x,z)

2

j D"C
y6

2

yNN D. (17)

A least-squares solution of the above equation can be
obtained through the computation of the generalized
inverse of B (see Eqs. (11)}(13).

3. Results

Basis functions provided a highly accurate representa-
tion of the patellar track geometry. The relative percent-
age error between the estimated and the actual z values
was always less than 1.56% (Fig. 3a). The mean relative
percentage error was 0.25% over all the data points used
in the "tting. The increase in the error was less than
0.09% when only half of the data points were used in the
"t (Fig. 3b). The relative percentage error increased as
fewer points were used to create the surface. However, the
relative percentage error increased by only 0.9% when as
few as one tenth of the data points were used. The
increase in the error was greater in regions with high
curvature. In general, the misalignment of the surface
normals increased as fewer points were used (Fig. 3c).
However, even when as few as one tenth of the data
points were used, the angle between the normal vectors
was less than 3.23. This shows that the method provides
an accurate representation even when fewer data points
are used to construct the mathematical function of the
surface.

Similar results, not shown, were obtained for the rest of
the contact surfaces of the knee. The mean percentage
error was 0.15% (range 0}0.53%) over all the data points
used in the "tting of the medial and lateral tibial plateau
and a mean percentage error of 0.16% (range 0}0.95%)
over all the data points used in the "tting of the patellar
surface.

The method provided an accurate representation at
the partitioning boundary of the highly curved surface of
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Fig. 4. A horizontal view of the partition curve ¸, between the two
sub-surfaces (X(x,y) and X(x,z)) and the relative percentage error of the
position vector of all the points (x

p
, y

p
, z

p
) along ¸ measured with

respect to the origin of the femoral coordinate system. All position
vectors were referenced to the origin of the femoral coordinate system.
r(x,y)
p

and r(x,z)
p

are the position vectors of the point (x
p
, y

p
, z

p
) computed

from the "tting of the X(x,y) and X(x,z) sub-surfaces, respectively. Para-
meters used to estimate the g(x,z) vector using Eq. (17) were identical to
the parameters used in the computation of g(x,z) with Dx"Dy and
K

x
"K

y
(see the legend of Fig. 3 for numerical values).

the patellar track (Fig. 4). The mean relative percentage
error was 0.07% (range 0.34%}0.56%) over all the data
points along the partitioning curve ¸.

4. Discussion

In this study, we used basis functions to represent joint
surface geometry. This method accurately described
the knee joint contact surfaces when compared to the
original data set. Furthermore, the singular-value de-
composition method used here insures accurate "tting in
cases where the data points are irregularly distributed.
Accurate surface models were obtained with a small
subset of the original data points. The current method
also insures continuity of the normal vector "eld, even
when errors are present. In addition, we have shown that
accurate representation of highly curved surfaces is
possible.

While o!ering some advantages, there are several re-
quirements of the method. First, the method assumes
that the surface is a single-valued function of two of the
three spatial variables. In the case of a highly curved
surface, and in order meet this condition, the data points
may need to be partitioned as they were in the example
presented here. Once partitioning of the surface is estab-
lished, additional constraints need to be added to insure

continuity along the partitioning curve as they were in
the example considered here. Second, there are con-
straints on the number of data points to be included.
Speci"cally, to avoid the rank-de"ciency of the A matrix
in Eq. (10), the number of data points (n) should at least
be equal to (K

x
#4)(K

y
#4) where K

x
and K

y
represent

the number of knots along the directions of the indepen-
dent variables x and y, respectively. If n were less than
(K

x
#4)(K

y
#4) the system of equations given in Eq.

(10) is underdetermined, since there are more unknowns
than equations; in this case, the system of equations
would have nontrivial solutions only if the system were
consistent (Ortega, 1987).

Models used to simulate the dynamics of joints
routinely include articular contact constraints. When ob-
jects in contact are assumed to be rigid (Wismans, 1980),
a point contact assumption is commonly used. If the
contact surfaces include some irregularities, small move-
ments of the contact point may result in an abrupt
change in the direction of the contact force. Because the
contact force lies in the direction of the normal to the
surface vector (in a friction-free contact), rapid changes in
the surface normal can degrade the estimates of kinetic
equilibrium (Hirokawa, 1992). This problem is avoided
when surfaces are represented with basis functions be-
cause the normal vector "eld is continuous.
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