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1. Introduction

Stiff knee gait is one of the most common gait abnormalities in
ambulatory children with cerebral palsy [1]. Stiff knee gait is a
debilitating gait pathology in which knee motion is substantially
diminished, and peak knee flexion in swing is delayed. Due to
inadequate toe clearance, subjects with stiff knee gait frequently
trip or adopt energy inefficient compensatory movements such as
circumduction or vaulting [2].

Rectus femoris transfer surgery is a common treatment for stiff
knee gait [3,4]. Over-activity of the rectus femoris muscle is
considered the primary cause of limited knee flexion, and rectus
femoris transfer surgery is intended to decrease the muscle’s
ability to extend the knee [3–5]. Three groups of studies have
reported various degrees of average peak knee flexion improve-
ment following rectus femoris transfer. The first group reported
large average improvements between 128 and 268 [6–8]. The
second group of studies reported small average improvements
between 78 and 108 [3,6,9,10]. The third group of studies reported

less positive average improvements related to swing phase peak
knee flexion in some patients [10–14].

Outcomes of rectus femoris transfer surgeries to treat stiff
knee gait are inconsistent, in part, due to insufficient under-
standing of predictors for positive outcomes. Sullivan et al. [15]
used regression analysis to establish a relationship between
preoperative and postoperative kinematics for 15 patients
following rectus femoris transfer. Niiler et al. [16] used neural
networks to make predictions of knee kinematics after rectus
femoris transfer for a six-patient testing set with an 18-patient
training set. Kay et al. [17] used regression analysis to determine
factors related to postoperative gait velocity for 47 patients with
cerebral palsy following a variety of surgical treatments.
Goldberg et al. [18] used statistical analysis to determine
factors correlated with improved postoperative knee flexion for
18 patients with stiff knee gait. Despite these studies, it remains
unclear how to combine preoperative data to predict whether
knee flexion will improve following rectus femoris transfer. At
present, indications for rectus femoris transfer are based on
qualitative observations of the patient’s gait, physical examina-
tion of muscle tone, inspection of gait analysis measurements
such as rectus femoris activity in early swing, and the
experience of the clinical team. A better understanding of
factors that predict outcomes is necessary to refine the clinical
indications for rectus femoris transfer surgery.
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A B S T R A C T

Rectus femoris transfer surgery is a common treatment for stiff knee gait in children with cerebral palsy.

Unfortunately, the improvement in knee motion after surgery is inconsistent. There is great interest in

understanding the causes of stiff knee gait and determining predictors of improved knee motion after

surgery. This study demonstrates that it is possible to predict whether or not a patient’s knee motion will

improve following rectus femoris transfer surgery with greater than 80% accuracy. A predictive model

was developed that requires only a few preoperative gait analysis measurements, already collected as a

routine part of treatment planning. Our examination of 62 patients before and after rectus femoris

transfer revealed that a combination of hip power, knee power, and knee flexion velocity at toe-off

correctly predicted postoperative outcome for 80% of cases. With the addition of two more preoperative

measurements, hip flexion and internal rotation, prediction accuracy increased to nearly 88%. Other

combinations of preoperative gait analysis measurements also predicted outcomes with high accuracy.

These results provide insight into factors related to positive outcomes and suggest that predictive

models provide a valuable tool for determining indications for rectus femoris transfer.
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This study used data mining techniques to predict outcomes of
rectus femoris transfer surgery in treating stiff knee gait. Our first
goal was to select a set of preoperative gait features that
distinguished between good (i.e., no longer stiff) and poor (i.e.,
remaining stiff) postoperative outcomes. Our second goal was to
determine which combinations of preoperative features best
predicted postoperative outcomes. Identifying the best combina-
tions of features to preoperatively categorize subjects with stiff
knee gait provides an objective tool that complements the
experience of the clinical team.

2. Methods

The subjects in this study had previously undergone gait analysis at Gillette

Children’s Specialty Healthcare, St. Paul, MN. Gait analysis data, including three-

dimensional joint angles, moments, and powers, were recorded or computed as a

routine part of treatment planning. Our inclusion criteria [18] required that each

subject (i) subsequently underwent rectus femoris transfer surgery as a correctional

treatment for stiff knee gait, (ii) was between six and 17 years of age prior to

surgery, (iii) had not previously undergone a selective dorsal rhizotomy, and (iv)

walked without orthoses or other assistance. Institutional approvals were obtained

for retrospective analysis of each subject’s preoperative and postoperative data.

Four gait parameters were used to determine whether a subject walked with stiff

knee gait [18]: (i) peak knee flexion in swing phase (e.g., [3,6]), (ii) knee range of

motion in early swing [19], (iii) total knee range of motion (e.g., [3,12]), and (iv)

timing of peak knee flexion during swing phase (e.g., [6,12]). A limb was classified as

‘‘stiff’’ if three or more of these measures were more than two standard deviations

below (or above in the case of the timing of peak knee flexion) the average control

value from able-bodied subjects matched for age, height, and weight. In subjects for

whom both limbs met the stiff criteria, the limb that was stiffer was included. A

group of 81 subjects met the inclusion criteria and were classified as stiff

preoperatively.

The group of 81 subjects classified as stiff preoperatively was divided into two

groups based on whether each subject walked with stiff knee gait postoperatively

[18]. Nineteen subjects were classified as borderline cases postoperatively and

excluded from further analysis. Thirty-one subjects were classified as not-stiff

postoperatively (i.e., one or none of the measures were indicative of stiff knee gait—

five subjects had 0 indicative measures and 26 subjects had 1) and therefore

categorized as exhibiting a ‘‘good outcome.’’ Thirty-one subjects were classified as

remaining stiff postoperatively (24 subjects had 3 indicative measures and seven

subjects had all 4) and therefore categorized as exhibiting a ‘‘poor outcome.’’ With

equal numbers of good and poor outcomes, there is a 50% probability of correctly

predicting the outcome of any one subject in this study without the addition of a

predictive model.

Two sets of preoperative gait features distinguishing between the 31-subject

good outcome group and the 31-subject poor outcome group were used. The first

set of features was determined from the literature. The literature-based features

consisted of five previously published features from the stiff limb associated with

improvements in knee flexion: (i) knee flexion velocity at toe-off [18,20], (ii)

average hip flexion moment in double support [18], (iii) average hip flexion

moment in early swing [20,21], (iv) average knee extension moment in double

support [18], and (v) average knee extension moment in early swing [20,22].

The second set of preoperative gait features distinguishing between the good and

poor outcome groups was determined by a filtering method [23]. The filter-based

features were chosen based on the discriminant power of the gait analysis data (e.g.,

Fig. 1a) from the pelvis and stiff limb (i.e., each joint angle, moment, and power) for

the subject groups identified in this study. The two-sample t-test is a commonly

used filter-type approach for feature selection (Fig. 1b) [24]. Given m measures of

gait analysis data (e.g., preoperative knee flexion angle) having n number of samples

throughout the gait cycle, there were m � n unfiltered features available to

distinguish between good and poor outcome groups. Features were ranked in order

of significance by their two-sample t-test statistic. The entire set of features was

filtered to a reduced set of 25 most significant features with the highest t-test

statistics.

Linear discriminant analysis (LDA) was used to determine the linear combination

of significant preoperative features that best predicted postoperative outcomes

(Fig. 1c). The original LDA formulation [25] is a well-known method for

classification, such as classifying good and poor outcome groups. For this study,

good outcome was encoded as 0 and poor outcome encoded as 1 to correspond with

the risk for poor outcome following surgery. Given a set of significant preoperative

features, LDA computed coefficients for a linear function of these features that

defined a boundary, encoded as 0.5, between good and poor outcome groups. This

boundary was then used to predict postoperative outcomes. For example, suppose a

subject’s predicted dependent variable value was 0.1. This subject’s predicted

outcome would be ‘‘good’’ since 0.1 is closer to 0 (good) than 1 (poor).

Prediction performance was evaluated by the repeated hold-out method [26].

The entire set of subjects was randomly separated into two subsets, called the

training set and the testing set. The training set contained 80% of subjects and the

testing set 20%. The training set was used as input for computing the LDA model,

while the testing set was ‘‘held-out’’ for subsequent validation. The LDA training

results were used to predict postoperative outcomes of the testing set. The

predictions were compared to the known postoperative outcomes for the testing set

to compute the percentage of correct predictions. Performing this hold-out method

Fig. 1. Example of filter-based feature selection distinguishing between the good

and poor outcome groups and linear discriminant analysis (LDA) resulting in the

boundary line that best separates the different group classification regions. (a) The

preoperative knee flexion data for each subject with stiff knee gait was divided into

two groups based on whether each subject walked with stiff knee gait

postoperatively. (b) The means and standard deviations for the good and poor

outcome groups were used to determine the two-sample t-test statistic. The set of

features available in the original data was filtered to a reduced set of significant

features with the highest test statistics. (c) Linear discriminant analysis was

performed for combinations of significant preoperative features. This discriminant

analysis bears a strong resemblance to linear regression when the group

classification is encoded as the dependent variable (e.g., good outcome as 0 or

poor outcome as 1) and the boundary represents a borderline case (e.g., 0.5).

Histograms of group distributions for individual features are shown on the top and

right side of the scatter plot for comparison. Although this example is for knee

flexion data, significant features were determined for all of the gait analysis data

collected (i.e., each joint angle, moment, and power). The 25 most significant

features were determined (Fig. 2b). Linear discriminant analysis was performed for

every combination of features to select the feature subsets with the highest

percentage of correct predictions.
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only once likely would have misrepresented the prediction performance. Therefore,

the 20% hold-out method was repeated by randomly selecting a new training set for

the LDA model and evaluating the predictions for a newly held-out testing set. This

process was repeated until the mean percentage of correct predictions for all

iterations converged to a constant value.

The best combinations of significant preoperative features were determined by a

wrapper method [23] based on complete exploration of every feature subset with a

maximum of five features. The complete method is the simplest wrapper-type

approach for feature selection [24]. However, this approach is computationally

intensive because LDA is performed for every combination of features to select the

feature subset with the highest percentage of correct predictions. The binomial

coefficient
n
k

� �
determines the number of different k-feature subsets that can be

chosen from an n-feature set. More than
X30

k¼1

30
k

� �
¼ 1:07 billion different feature

subsets are possible for our relatively small set of 30 features (i.e., five literature-

based and 25 filter-based features). To reduce computational intensity, the final

subset size was limited to five or less features to maintain a reasonable
X5

k¼1

30
k

� �
¼

174;436 subsets for the combination of all 30 features. In addition, we separately

explored
X5

k¼1

5
k

� �
¼ 31 subsets chosen from the five literature-based features and

X5

k¼1

25
k

� �
¼ 68;405 subsets chosen from the 25 filter-based features. The

percentage of correct outcome predictions was determined for each subset of

significant preoperative features.

3. Results

Several combinations of preoperative features correctly pre-
dicted postoperative outcomes better than the actual 50%
probability of the input data (Table 1). Given both literature-
based (Fig. 2a) and filter-based features (Fig. 2b) meeting our first
goal of selecting preoperative gait features that distinguish
between good and poor postoperative outcomes, we achieved
our second goal of determining which combinations of features
best predict outcomes. The percentage of correct predictions was
highest (87.9% correct) using a combination of hip flexion and hip
power after initial contact (4.4% gait), knee power at peak knee
extension in stance (40.7% gait), knee flexion velocity at toe-off
(62.7 � 3.5% gait), and hip internal rotation in early swing (71.4%

Fig. 2. The two sets of preoperative features distinguishing between the good and poor outcome groups. (a) The five preoperative literature-based features associated with

improvements in knee flexion. Features are numbered in no particular order and shown at their corresponding locations during the gait cycle. For the subjects in this study,

double support was from 47.9 � 2.9% gait to 62.7 � 3.5% gait and peak knee flexion occurred at 79.7 � 5.1% gait. (b) The 25 most significant preoperative filter-based features

distinguishing between the good and poor outcome groups that were determined by the two-sample t-test filtering method (Fig. 1a and b). Features are ranked in order of

significance by their t-test statistics and shown at their corresponding locations during the gait cycle.
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gait). The percentage of correct predictions remained high (80.2%
correct) using a subset combination of only three of these features,
namely knee flexion velocity at toe-off, knee power, and hip power
(Fig. 3, Table 2). Given only three filter-based features, the percentage
of correct predictions remained high (78.3% correct) using a
combination of pelvic tilt at the beginning of single limb support
(18.7% gait), hip flexion after the beginning of double support (52.0%

gait), and peak knee flexion (79.7 � 5.1% gait). Given only two
literature-based features, the percentage of correct predictions
dropped (68.1% correct) using a combination of average hip flexion
moment in double support (from 47.9 � 2.9% gait to 62.7 � 3.5% gait)
and knee flexion velocity at toe-off (62.7 � 3.5% gait). Given only one
literature-based feature, the percentage of correct predictions
remained the same (67.8% correct) using knee flexion velocity at
toe-off (62.7 � 3.5% gait). Given only one filter-based feature, the
percentage of correct predictions remained the same (68.2% correct)
using ankle power at the beginning of double support (48.3% gait).

4. Discussion

In clinical settings, indications for rectus femoris transfer
surgery generally include three features: (i) diminished range of
knee flexion during swing phase, (ii) excessive rectus femoris EMG
activity during pre-swing or early swing, and (iii) a positive Ely
test. Several studies have suggested that statistical and regression
analyses of gait data may be used to help predict outcomes of
rectus femoris transfer surgeries [15–18]. Our results confirm that
data mining techniques predict outcomes of rectus femoris
transfer surgery in treating stiff knee gait. In evaluating subjects
with stiff knee gait, linear combinations of a few significant
preoperative features should be considered as additional indica-
tions for rectus femoris transfer surgery.

A combination of three preoperative gait analysis measure-
ments correctly predicted 80% of subjects as having good outcomes

Table 2
Linear discriminant analysis results for a combination of three significant preoperative features and example forms completed to predict outcomes of three subjects. Two

subjects (#1 and #2) had correct outcome predictions and the third subject (#3) had an incorrect outcome prediction. The example form requires certain units for knee flexion

velocity (8/% gait), hip and knee power (W/kg). Two significant figures were used for all form entries and subsequent calculations. The sum of all rows for each subject

indicates the predicted outcome, where a sum less than 0.5 indicates a good outcome and more than 0.5 a poor outcome. For the subjects in this study, this combination of

three significant preoperative features predicted the correct outcome in 52 of the 62 cases (84% correct).

Table 1
Summary of the best combinations of three or less significant preoperative features

and corresponding percentages of correct predictions.

Significant preoperative features

(portion of gait cycle)

Combination Correct

prediction (%)

Literature-based features

L1. Knee flexion velocity (toe-off) L1–L2 68.1
L2. Average hip flexion moment

(double support)

L1 67.8

L5. Average knee extension

moment (early swing)

L1–L2–L5 66.4

Filter-based features

F1. Ankle power (48.3%) F2–F18–F22 78.3
F2. Pelvic tilt (18.7%) F2–F18 74.1

F4. Hip power (4.4%) F1 68.2

F18. Hip flexion (52.0%)

F22. Knee flexion (80.8%)

Combination of literature-based

and filter-based significant features

L1–F2–F4 81.9
L1–F2 77.2

Fig. 3. Scatter plots of a combination of three significant preoperative features separating the good and poor postoperative outcome groups. Filled circles represent training

data and open circles represent test data for one instance of the repeated hold-out method. Circle shading indicates good and poor postoperative outcomes. Boundary lines

divide the good and poor outcome prediction regions.
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following rectus femoris transfer surgery. First, the knee should
have high flexion velocity (>1.28/% gait) at toe-off. Second, the knee
should be either absorbing very little power (>�0.03 W/kg), or
producing mainly knee flexion power after peak knee extension in
preparation for swing. Third, the hip should be either producing
very little or absorbing power (<0.37 W/kg) after initial contact.
More information differentiating good and poor outcome groups,
including plots of these three features, is available as supplemen-
tary material online. As illustrated in Table 2 (subject #1 and #2),
linearly combining these three features, already collected as a
routine part of treatment planning, makes it possible to predict the
outcome of rectus femoris transfer surgery for many subjects.
However, there are certain subjects for whom this combination of
preoperative measurements makes the incorrect outcome predic-
tion (Table 2, subject #3).

A combination of five preoperative gait analysis measurements
increases the percentage of correct predictions to roughly 88%. Two
additional features in combination with the three described above
are necessary. First, the hip should be highly flexed (>398) after
initial contact, in part, due to increased pelvic tilt. Second, the hip
should have very low internal rotation (<208) in early swing, in
part, due to hip adduction. Linearly combining all five features
makes it feasible to correctly predict outcomes for nearly nine out
of 10 subjects.

There are several possible explanations why it is feasible to
predict the outcome of rectus femoris transfer surgery. First,
previous studies have identified preoperative features (e.g., knee
flexion velocity at toe-off) associated with postoperative improve-
ments in knee flexion [18,20–22]. Second, visual inspection of
mean preoperative gait analysis measures (e.g., knee flexion in
Fig. 1) distinguishes between good and poor outcome groups.
Third, given multiple preoperative gait analysis measures with
significant discriminant power, linear combinations of these
measures may provide higher discriminant power than does a
single measure alone.

Different combinations of significant preoperative features
predicted postoperative outcomes with a high accuracy. This
occurs because information within certain features (e.g., joint
angle, moment, and power) is not independent (e.g., because joint
power depends on joint moment). Also, a coefficient computed by
linear discriminant analysis for a particular feature varies
depending on the other features included in a feature subset.
Further, adding features with nearly the same probability
distributions for good and poor outcome groups may conflict
with a good feature subset and suppress correct predictions by
changing coefficients of the linear function of these features (e.g.,
more than two literature-based features).

The data mining techniques used in this study have several
limitations. First, the number of subjects was relatively small
compared to other bioinformatics studies. However, the training
set size of 50 that we fit with a linear model of three features
provided an observed power of 0.99 (a = 0.05, observed R2 = 0.34).
More subjects would merely increase statistical power or perhaps
allow more features to be added without a reduction of power.
Second, the feature selection was based on the simplest filter-type
and wrapper-type methods available; more sophisticated
approaches would improve computational efficiency, allowing
us to investigate larger sets of features. Third, the linear
discriminant analysis was the simplest approach among the many
available discriminant analysis methods; and more complex
methods may improve prediction accuracy. Fourth, by carefully
defining whether or not a subject walked with stiff knee gait using
graded categories of four gait parameters [18], the predictive
model was not contaminated by borderline cases, which allowed
us to generate the best linear model to predict extremely good and
poor outcomes; the percentage of correct predictions reported may

change if using a different definition of stiff knee gait. Fifth, the
results were generated from one database at the Center for Gait
and Motion Analysis at Gillette Children’s Specialty Healthcare;
differing gait analysis protocols and patient populations may
influence the significance of certain features and coefficients in the
linear model combining these features.

Our finding that certain preoperative features are significant to
predicting outcomes of rectus femoris transfer is consistent with
the findings of others. Goldberg et al. [18] demonstrated the
correlation between knee flexion velocity at toe-off and improve-
ments in stiff knee gait following rectus femoris transfer surgery.
Our findings support this study because knee flexion velocity at
toe-off single-handedly predicted nearly 70% of outcomes. Some
studies have used sagittal plane lower-body kinematics to make
outcome predictions [15,16]. Our finding of significant preopera-
tive features in both hip and knee flexion angles is consistent with
these studies as well. The current work additionally demonstrates
the value of joint powers in combination with three-dimensional
kinematics to predict outcomes.

The potential to predict treatment outcomes for stiff knee gait is
exciting and valuable. The data mining techniques in this study
identified the best combinations of five or less significant features
to preoperatively categorize subjects with stiff knee gait. These
results indicate that a reduced set of preoperative features can
distinguish between good and poor postoperative outcomes. While
the intuition and experience of the clinical team are significant in
recognizing indications for rectus femoris transfer, data mining
provides an additional, quantitative tool for preoperative pre-
dictors of postoperative outcome. Future studies are needed to
determine the ultimate set of predictors and if data mining can
prospectively improve treatments.
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