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Abstract Muscle wrapping computations are an important feature in musculoskele-
tal simulations. In this paper we present a novel Jacobian-based method for line-
based muscle-path computations over multiple general smooth surfaces allowing
for second-order Newton-Raphson iterations. The method is based on the analytical
determination of infinitesimal displacements along geodesics using Jacobi fields. It
does not share the disadvantages of discretized methods in terms of non-smoothness
when using surface discretizations, and high computational costs when using dis-
cretized spring-mass approaches. The paper focusses on the technical details of the
proposed method, while specific biomechanical applications are left for future con-
tributions. An example with three surfaces involving a surface with a general distri-
bution of curvature shows the general applicability of the method.
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1 Introduction

A key task of musculoskeletal simulations is the computation of the transmission of
tensional muscle force to joint moments and/or reaction forces. Muscles are com-
monly modeled as thin strings which take the locally shortest path between their
origin and insertion points while wrapping frictionlessly around multiple wrapping
surfaces that represent neighboring bones, tissue, and the neglected dimensions of the
muscle. State-of-the-art approaches to line-based muscle wrapping can be divided
into two main groups: (1) approaches using surface or path discretizations and (2)
approaches using explicit smooth surfaces. Discretizing approaches such as [1, 2]
yield fast approximate solutions and allow for using realistic bone geometry obtained
from MRI or CT. However, they cause nonsmooth path motion at surface edges and
hence only C1 continuous behavior of the path length, which slows down variable-
step-size integrators in dynamic simulations driven by muscle forces. Explicit smooth
wrapping-surface approaches such as [3–5] provide continuous wrapping, but are
limited to simple objects such as single spheres, single cylinders, or a compound of
both, which are not always sufficient to represent general bone and surrounding soft
tissue surfaces. Elastic approaches such as [4] circumvent this problem, but intro-
duce new difficulties such as an oscillatory behavior of the muscle path. Recently,
Stavness et al. 2012 [6] proposed a root-finding approach in which the total path is
regarded as a concatenation of straight-line segments between geodesics on the sur-
faces, allowing to tackle general smooth surfaces while avoiding oscillatory behavior.
The path is computed by iterating the positions of the boundary points of the geo-
desics until all transitions between adjacent segments are collinear. To this end, the
Jacobian mapping variations of geodesic boundary points to variations of the path
error is required. While this Jacobian can be determined by finite differences, such
discretizations are expensive and also do not render smooth transitions between time
steps. In this paper, we derive, based on the formulation [6], explicit formulas for the
path-error Jacobian using differential-geometric properties of infinitesimal displace-
ments along geodesics based on Jacobi fields. The approach is easy to implement,
yields fast convergence and is thus well-suited for muscle wrapping applications.

2 Conditions for a Geodesic over Several Surfaces

We regard a string that is spanned between an origin point O and an insertion point I .
The string wraps frictionlessly across a set of n wrapping surfaces S i (i = 1, . . . , n)

and minimizes the length with respect to all other neighboring trajectories connecting
O and I . The total muscle path results as a concatenation of n − 1 straight-line
segments between the surfaces, two straight lines to points O and I , and n geodesics
on the surfaces. Each geodesic γ i is uniquely defined by its start point Pi and end
point Qi , and each straight-line segment is defined by the unit direction vector ei
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Fig. 1 Global path error components

and its respective boundary points Qi−1 and Pi for 1 < i < n + 1, O and P1 for
i = 1 and Qn and I for i = n + 1.

Assume that the section of interest of surface Si ∈ R
3 can be parameterized by a

nonsingular differentiable function xi (ui , vi ) : R
2 �→ R

3 with respect to a surface
base frame Ki

S in terms of two surface coordinates (ui , vi ) ∈ R
2 such that for the

outwards normal it holds (Fig. 1)

N i := xi
u × xi

v

‖ xi
u × xi

v ‖ , x (.) := ∂x

∂(.)
. (1)

Moreover, let t i be the geodesic’s tangent and let Bi = t i × N i be its binormal.
At the solution configuration, all transitions between adjacent segments are

collinear (see Fig. 1). If they are not, for each geodesic γ i , four possible local path
errors arise from the orthogonality conditions

εi (qi ,Ki
S) :=

⎡
⎢⎢⎣

ei · N i
P

ei · Bi
P

ei+1 · N i
Q

ei+1 · Bi
Q

⎤
⎥⎥⎦ , qi =

⎡
⎢⎢⎣

ui
P

vi
P

ui
Q

vi
Q

⎤
⎥⎥⎦ . (2)

The local path errors can be assembled into the global path-error vector

ε(q,K) =

⎡
⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎦ ∈ R

4n×1, q =

⎡
⎢⎢⎢⎣

q1

q2

...

qn

⎤
⎥⎥⎥⎦ ∈ R

4n×1, K =

⎡
⎢⎢⎢⎣

K1
S

K2
S
...

Kn
S

⎤
⎥⎥⎥⎦ . (3)
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yielding the nonlinear root condition for the muscle path

ε(q,K) = 0 . (4)

For each time step, the set of reference frames contained in K is fixed, and Eq.
(4) can be solved for the unknown geodesic boundary-point coordinates q using a
Newton-Raphson method. This requires knowledge of the Jacobian Jq := ∂ε/∂q ∈
R

4n×4n containing the partial derivatives

Jq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ε1

∂q1
P

∂ε1

∂q1
Q

∂ε1

∂q2
P

∂ε2

∂q1
Q

∂ε2

∂q2
P

∂ε2

∂q2
Q

∂ε2

∂q3
P

. . .
. . .

. . .
. . .

∂εi

∂qi−1
Q

∂εi

∂qi
P

∂εi

∂qi
Q

∂εi

∂qi+1
P

. . .
. . .

. . .
. . .

∂εn−1

∂qn−2
Q

∂εn−1

∂qn−1
P

∂εn−1

∂qn−1
Q

∂εn−1

∂qn
P

∂εn

∂qn−1
Q

∂εn

∂qn
P

∂εn

∂qn
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)
A general block-row Jq (i, :) in Eq. (5) comprises four submatrices

Jq (i, :) =
[

∂εi

∂qi−1
Q

∂εi

∂qi
P

∂εi

∂qi
Q

∂εi

∂qi+1
P

]
(6)

which represent two coupling terms ∂εi/∂qi−1
Q

if i > 1, and ∂εi/∂qi+1
P

if i < n, as

well as the local path-error Jacobians Ji
q := ∂εi/∂qi

Ji
q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂ui
P

(
ei · Ni

P

) ∂

∂vi
P

(
ei · Ni

P

) ∂

∂ui
Q

(
ei · Ni

P

) ∂

∂vi
Q

(
ei · Ni

P

)

∂

∂ui
P

(
ei · Bi

P

) ∂

∂vi
P

(
ei · Bi

P

) ∂

∂ui
Q

(
ei · Bi

P

) ∂

∂vi
Q

(
ei · Bi

P

)

∂

∂ui
P

(
ei+1 · Ni

Q

) ∂

∂vi
P

(
ei+1 · Ni

Q

) ∂

∂ui
Q

(
ei+1 · Ni

Q

) ∂

∂vi
Q

(
ei+1 · Ni

Q

)

∂

∂ui
P

(
ei+1 · Bi

Q

) ∂

∂vi
P

(
ei+1 · Bi

Q

) ∂

∂ui
Q

(
ei+1 · Bi

Q

) ∂

∂vi
Q

(
ei+1 · Bi

Q

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
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In this Jacobian, the derivatives of the normal vectors N i
P , N i

Q as well as of the unit

vectors ei , ei+1 with respect to the coordinates ui
P , vi

P and ui
Q, vi

Q can be determined
directly from local surface geometry. These derivations are left out here due to lack
of space. On the other hand, the partial derivatives of the geodesic’s binormals Bi

P
and Bi

Q require through their definition Bi = t i × N i the partial derivatives of the

tangent vectors t i
P and t i

Q with respect to the coordinates of both geodesic boundary
points. These derivatives involve cross-over differential mappings over geodesics
which can be computed using Jacobi fields, as discussed next.

3 Coupled End-Point Derivatives Across Geodesics

In this section, we review some fundamental concepts of differential geometry (see
[7, 8]) and apply them to the given problem. Let the geodesic γ be given in polar
form, i.e. assume that the start point P is fixed. Let s be the arc length of γ and let
θ be an angular coordinate defining the initial direction of γ (Fig. 2). By the Lemma
of Gauss it holds Fpolar = xθ · xs = 0 ∀ s �= 0.

When the angle θ is varied, a point Q at some constant distance from the pole
P will travel an arc length βQ along a geodesic circle. We define the positive arc
direction of such a circle to be oriented along the binormal vector B Q at Q. The
partial derivative a = ∂β/∂θ of the arc length β at any point of the geodesic fulfills
the scalar Jacobi equation (see [7, 9])

a′′ + K a = 0 , a(s = 0) = 0 , a′(s = 0) = 1 , (.)′ := ∂(.)/∂s , (8)

where K is the Gaussian curvature. The scalar Jacobi Eq. (8) can be integrated
together with the differential equations of the geodesic.

For the computation of the partial derivatives of the tangent vectors with respect
to the boundary-point coordinates, a local coordinate-transformation is carried out
first. Let dsQ and dβQ be infinitesimal increments along the geodesic γ and the
geodesic circle at point Q for the fixed pole P (Fig. 2). Likewise, let dsP and dβP

Fig. 2 Geodesic polar
coordinates (θ, s) for a fixed
pole P
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be the infinitesimal increments along the geodesic and the geodesic circle at point
P when Q is taken as the fixed pole. Here, dsP is oriented along t P , i.e. in direction
of length shortening, while dβP is oriented along B P . Locally, the transformation of
the differentials of β, s and u, v is given by

∂s

∂u
= xu · t ,

∂s

∂v
= xv · t ,

∂β

∂u
= xu · B ,

∂β

∂v
= xv · B . (9)

The derivatives of t P and t Q with respect to sP and sQ can be obtained from the
Frenet-Serret formulas (see, e.g. [8])

∂t P

∂sP
= κP n P ,

∂t P

∂sQ
= 0 ,

∂t Q

∂sP
= 0 ,

∂t Q

∂sQ
= κQ nQ , (10)

where n P := x ′′
P/κP and nQ := x ′′

Q/κQ are the unit normals of the geodesic and κP

and κQ are the curvatures of the geodesic at P and Q.
The concept of the Jacobi field along the geodesic γ allows for the computation of

the derivatives of t P and t Q with respect to βP and βQ . For an infinitesimal motion
dβQ of the geodesic’s end point Q, the tangent vector t P at the start point P rotates
about the surface normal N P with an angle dθP . This relation is given by the scalar
Jacobi field at Q, yielding

∂t P

∂βQ
= ∂t P

∂θP

∂θP

∂βQ
= B P a−1

Q . (11)

Here ∂t P/∂θP is a local derivative, while ∂θP/∂βQ depends on the geodesic. Note
that the latter term becomes singular at conjugate points of P , which are defined by
a vanishing Jacobi field a = 0. Analogously, symmetry yields

∂t Q

∂βP
= ∂t Q

∂θQ

∂θQ

∂βP
= −B Q â−1

P , (12)

where â denotes the “backwards” Jacobi field obtained by integrating Eq. (8) from
Q to P .

The other derivatives are obtained similarly using the definition t = ∂x/∂s

∂t P

∂βP
= ∂t P

∂θQ

∂θQ

∂βP
= ∂

∂θQ

(
∂x P

∂sP

)
â−1

P (13)

and the theorem of Schwarz, yielding

∂t P

∂βP
= ∂

∂sP

(
∂x P

∂θQ

)
â−1

P = ∂

∂sP

(
B P âP

)
â−1

P = −τP N P − B P â′
P â−1

P , (14)

where τ is the geodesic’s torsion. Likewise, it holds by symmetry
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∂t Q

∂βQ
= −τQ N Q + B Q a′

Q a−1
Q . (15)

4 Results

The formulas described above can be assembled into a modular program for muscle-
path computations. Here we show the results of our implementation in Matlab. In
this implementation, the muscle path can be spanned over several general surfaces
(Fig. 3a), and both the end points as well as all surfaces can perform arbitrary spatial
motions. Each time frame comprises two types of iterations: an inner loop and an
outer loop. The inner loop carries out geodesic shooting from point P such that point
Q is reached. Each iteration step consists of numerically integrating the geodesic
equations and Eq. (8) with given initial direction θ . Corrections of the geodesic length
and the initial direction are obtained by projecting the difference Δx E = x Q − x E
from the current trial end point E to the target point Q onto the two polar directions
at E

ΔsE = Δx E · t E (16)

ΔθP = Δx E · B E a−1
E . (17)

(a)

(b)
(c)

Fig. 3 a Sample application. b Inner-loop iterations using Eqs. (16, 17). c Smooth muscle length
and rate of length change
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The outer loop carries out the Newton-Raphson iteration for path error ε(k)

q(k+1) = q(k) −
[
J(k)

q

]−1
ε(k) . (18)

Figure 3a shows a sample motion with three surfaces, where S3 represents the
case of a general distribution of curvature and where the nonsymmetric ellipsoid
S2 is rotating about a skew axis. Due to the closedness of subsequent time frames,
both loops converge in 2-3 iterations per frame. Figure 3b shows one inner loop for
S2. Figure 3c contains the time histories of total muscle length and its rate of length
change, showing that both curves are smooth.

5 Conclusions

The presented approach is suitable for efficient smooth muscle-wrapping based on
second-order Newton iterations. The path-error Jacobian can be determined explic-
itly by solving the Jacobi field Eq. (8). Second-order convergence can be achieved for
inner loop geodesic shooting iterations using geodesic polar coordinates. The algo-
rithms are operational for an arbitrary number of surfaces which can be parameterized
explicitly. Future publications will provide a comparison to existing approaches and
the application to specific biomechanics examples, and may involve the generaliza-
tion of the formulation to multiple-patch as well as to implicit surface parametriza-
tions.
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