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Abstract Musculoskeletal simulation has become an essential tool for understanding hu-
man locomotion and movement disorders. Muscle-actuated simulations require methods that
continuously compute musculotendon paths, their lengths, and their rates of length change
to determine muscle forces, moment arms, and the resulting body and joint loads. Musculo-
tendon paths are often modeled as locally length minimizing curves that wrap frictionlessly
over moving obstacle surfaces representing bone and tissue. Biologically accurate wrapping
surfaces are complex, and a single muscle path may wrap around many obstacles. How-
ever, state-of-the-art muscle wrapping methods are either limited to analytical results for
a pair of simple surfaces, or they are computationally expensive. In this paper, we intro-
duce the Natural Geodesic Variation (NGV) method for the fast and accurate computation
of a musculotendon’s shortest path across an arbitrary number of general smooth wrapping
surfaces, and an explicit formula for the path’s exact rate of length change. The total path
is regarded as a concatenation of straight-line segments between local surface geodesics,
where each geodesic is naturally parameterized by its starting point, direction, and length.
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The shortest path is computed by finding the root of a global path-error constraint equation
that enforces that the geodesics connect collinearly with adjacent straight-line segments.
High computational speed is achieved using Newton’s method to zero the path error, with
an explicit, banded Jacobian that maps natural variations of the geodesic parameters to path-
error variations. Three simulation benchmarks demonstrate that the NGV method computes
high-precision solutions for path length and rate of length change, allows for wrapping over
biologically accurate surfaces, and is capable of simulating muscle paths over hundreds of
surfaces in real time. We thus believe the NGV method will facilitate the development of
more accurate yet very efficient musculoskeletal models.

Keywords Muscle wrapping · Musculotendon path · Shortest path · Geodesic · Geodesic
variation · Jacobi field

1 Introduction

Musculoskeletal simulations provide a quantitative means to predict internal body loads
given a set of experimentally measured body kinematics and ground reaction forces. There-
fore, musculoskeletal models are widely used to study pathological gait patterns [1–5], to
predict the contribution of individual muscles to motion such as walking [6–10], running
[11, 12], and shoulder motion [13, 14], to quantify bone-on-bone contact forces and joint
loads [15–18], and for surgical planning [19]. Internal body loads depend on muscle forces
and the paths of muscles inside the body. To better understand the force-generating capacity
of anatomical muscle, researchers have studied isolated muscles and developed models of
contraction dynamics [20–24]. It is now well-established that a muscle’s ability to generate
force depends on the path’s current length and its rate of length change, yet the in-vivo mea-
surement of muscle paths and forces is still extremely challenging. While it is possible to
accurately measure the coordinates of muscle origin and insertion points from cadavers [25,
26], experimental data of muscle forces and paths has only been obtained in few cases using
MRI [27, 28] and force transducers attached to tendons [29, 30].

Musculoskeletal models require algorithms that compute muscle paths, their lengths and
their rates of length change to determine muscle forces and the contribution of individual
muscles to motion. Muscles commonly wrap around multiple complex anatomical obstacles
such as bones and neighboring tissue, thus most muscle paths cannot be represented ade-
quately by straight lines. Therefore, a broad variety of muscle wrapping approaches has been
reported in the literature [13, 28, 31–47]. Finite element algorithms [28, 36, 38, 44, 45] pro-
vide the highest level of detail because they allow for considering muscle deformations and
using realistic bone geometry for wrapping, but they are computationally expensive. In the
majority of musculoskeletal models, muscle paths are approximated by length-minimizing
curves (geodesics) that transmit forces to the skeleton while wrapping around geometric ob-
stacle surfaces representing bone and tissue [13, 31–35, 37, 39–43, 46, 47]. Such curved-line
approaches have been widely used to simulate the upper limb [31, 39, 40], the lower limb
[33, 35, 42], and the shoulder [13, 14].

Curved-line muscle wrapping approaches can roughly be subdivided into two groups:
approaches using path or surface discretizations [33, 35, 37, 39, 40, 43] and approaches
using smooth curves on smooth wrapping surfaces [31, 32, 37, 39, 41, 46]. Discretized sur-
faces such as bone meshes obtained from CT or MRI scans [33, 34, 48] provide generality
and low computational costs, but cause nonsmooth rate of length change during path evo-
lution and wrapping over surface edges. This can slow down variable step size integrators



A fast multi-obstacle muscle wrapping method using natural geodesic variations

during simulation and introduces discontinuities in muscle force. Researchers have also ap-
plied nonlinear optimization to compute discretized shortest muscle paths [37, 39]. They
minimized the energy of a series of lumped springs, given implicit surface equations as
unilateral constraints. Their approach allows for using multiple implicit surfaces and pro-
vides good approximations of the exact shortest path when the level of path discretization
is sufficiently high. However, computational costs grow significantly with the level of path
discretization and the number of surfaces, and the method yields nonsmooth rate of length
change.

Smooth curves and surfaces are necessary for muscle wrapping to avoid the nonsmooth
behavior of discretizations. An early smooth wrapping approach was presented by van der
Helm [13]. He used spheres, cylinders, and ellipsoids for single-object wrapping around the
shoulder, approximating surface geodesics by planar curves. Garner and Pandy [31] intro-
duced the Obstacle-Set method which computes the exact shortest (geodesic) path across a
maximum of two spheres, cylinders, or a combination of both. Their method requires a series
of case distinctions and does not generalize for more than two elementary surfaces. Stavness
et al. [46] regarded the total path as a concatenation of straight-line segments between two
geodesic segments on each surface, where each geodesic segment is assumed to emanate in
the direction of its adjacent straight-line segment. They computed the shortest path across
multiple implicit surfaces by iterating the origin-point positions of the geodesic segments
such that the two geodesic segments on each surface connect collinearly at their closest
points, and the adjacent straight-line segments are tangent to the surface. This approach is
general and accurate but computationally slow as it relies on finite-differences Jacobians
and requires nested loops for finding the closest points on each pair of local geodesic seg-
ments. Scholz et al. [47] used a single geodesic segment per surface and formulated the
constraints for the shortest path solely at the transitions between the geodesic segments and
their adjacent straight-line segments. In that work, each geodesic segment was parameter-
ized by the coordinates of its boundary points on general parametric surfaces, and a system
of local path-error constraints was introduced which enforces that the transitions between all
geodesic segments and adjacent straight-line segments are collinear. That method allowed
for the computation of shortest muscle paths across multiple surfaces by solving a system of
nonlinear path-error constraints with an explicit Jacobian. Hence, that method is more effi-
cient than [46], yet it still requires nested loops for computing geodesics between two points
on a surface. Overall, previous approaches to smooth-surface wrapping did not address the
explicit computation of the rate of length change of the muscle path, which is an important
input for computing muscle forces using Hill-type muscle models [20–22, 24].

There is no muscle wrapping algorithm in the literature that computes a muscle’s short-
est path over multiple biologically realistic surfaces in real time, as well as the path’s exact
rate of length change. As a result, biomechanists face a trade-off between the computational
speed and the accuracy of their models. In this paper, we introduce the Natural Geodesic
Variation (NGV) method that allows for both the accurate and fast computation of a muscle’s
shortest path as it wraps across an arbitrary number of general smooth wrapping surfaces.
Analogously to [47], the path is regarded as a concatenation of straight-line segments which
have to connect collinearly to local geodesic segments on the surfaces. The collinearity con-
ditions are used to state a nonlinear path-error constraint equation, whose root is computed
iteratively to find the shortest muscle path. The new approach to solving the shortest-path
problem presented here consists of (i) naturally parameterizing each surface geodesic by its
starting point, direction, and length; (ii) introducing four natural, i.e., independent, varia-
tions of the parameters of each geodesic; and (iii) completely elaborating the differential
geometric relationships between the natural geodesic variations and the resulting path-error
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variations. Thereby, the shortest-path problem can be solved very efficiently without nested
loops by applying a gradient-based root-finding method, e.g., Newton’s method, with an
explicit banded Jacobian. In addition to solving the shortest-path problem, we present an
explicit formula for the path’s exact rate of length change which is independent of the for-
mulation used to solve for the path.

The paper is structured as follows: Sect. 2 introduces the global path’s constraint equa-
tions and the unknowns of the root-finding problem, i.e., the geodesic parameters. Section 3
elaborates the differential-geometric concepts which are required to compute the path-error
Jacobian for the Newton iterations explicitly. Section 4 describes the structure of the con-
straint Jacobian and its assembly from the terms derived in Sect. 3. In Sect. 5, an explicit
formula for the path’s exact rate of length change is derived. Section 6 contains the results
of three simulation benchmarks which were used to evaluate the speed and the accuracy
of our method: (i) an accuracy benchmark that compares our method with a conventional
nonlinear energy-minimization approach; (ii) a geometry benchmark that contains multi-
ple complex wrapping obstacles including a surface patch fitted to a human ribcage; and
(iii) a computational-speed benchmark to measure the computational costs when wrapping
a single muscle over a variable number of moving obstacles.

2 Formulation of the shortest-path problem as a root-finding problem

Our goal is to compute the path of a massless taut string between an origin point O and
an insertion point I that wraps frictionlessly over an ordered set of n obstacle surfaces S i

(i = 1, . . . , n). At any instant of time, the string’s path is a global geodesic, i.e., it minimizes
the arc length with respect to all other neighboring curves connecting O and I . We assume
here that the global path always touches all surfaces (no lift-off considered), thus that it
consists of an alternating sequence of n + 1 straight-line segments and n local geodesic
curves γ i on the surfaces. We will further assume that the complete surface patch of interest
(of contact) of surface Si can be covered by a nonsingular differentiable parameterization
xi(ui, vi) : R2 �→ R

3 with respect to a surface-fixed coordinate frame Ki
S in terms of two

surface coordinates (ui, vi) ∈ R
2. The surface coordinates are chosen so that the outward

unit normal of Si with respect to Ki
S is given by

Ni := xi
u × xi

v

‖xi
u × xi

v‖
, x(·) := ∂x

∂(·) . (1)

The parameterization x(u, v) on S (index i omitted) allows for computing arc length
parameterized geodesics γ = x(u(s), v(s)) : [0, �γ ] �→ S with length �γ by solving two or-
dinary differential equations [49]

u′′ + Γ 1
11

(
u′)2 + 2Γ 1

12u
′v′ + Γ 1

22

(
v′)2 = 0, (2)

v′′ + Γ 2
11

(
u′)2 + 2Γ 2

12u
′v′ + Γ 2

22

(
v′)2 = 0, (3)

where (·)′ = d(·)/ds denotes a derivative with respect to arc length s. For the Christoffel
symbols in Eqs. (2) and (3) it holds

Γ 1
11 =

1
2 Eu G − A F

E G − F2
, (4)

Γ 1
12 = C G − D F

E G − F2
, (5)
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Γ 1
22 = B G − 1

2 F Gv

E G − F2
, (6)

Γ 2
11 =

1
2 Eu F − A E

F2 − E G
, (7)

Γ 2
12 = C F − D E

F2 − E G
, (8)

Γ 2
22 = B F − 1

2 E Gv

F2 − E G
, (9)

with A = xuu ·xv , B = xu ·xvv , C = xu ·xuv , D = xuv ·xv , E = xu ·xu, F = xu ·xv , G = xv ·xv ,
Eu = 2xuu · xu, Gv = 2xvv · xv . Equations (2) and (3) can be regarded as the equations of
motion of a freely moving particle on S. Their solution requires four initial conditions: the
surface coordinates (uP , vP ) of the geodesic’s start point P (the particle’s start point), and
the derivatives (u′

P , v′
P ) of these coordinates with respect to arc length, defining the curve’s

initial direction (the particle’s initial velocity). We choose (u′
P , v′

P ) such that γ is a unit-
speed curve, that is,

∥
∥x ′∥∥ = ∥

∥xuu
′ + xvv

′∥∥ = 1. (10)

Without loss of generality, we assume that the initial length of each local geodesic γ i is
zero. Thus it can be parameterized by the following five parameters

qi := [
ui

P vi
P ui

P

′
vi

P

′
�i

γ

]T
, (11)

of which, however, only four are independent due to the unit-speed constraint for x ′ (see
Eq. (10)).

At the geodesic’s start point P i : xi
P = xi(ui(0), vi(0)) and end point Qi : xi

Q =
xi(ui(�i

γ ), vi(�i
γ )), we define two orthonormal boundary-point trihedra (see Fig. 1)

Ki
P := {

xi
P , t iP , Ni

P , Bi
P

}
, (12)

Ki
Q := {

xi
Q, t iQ, Ni

Q, Bi
Q

}
, (13)

where t = x ′ is the geodesic’s tangent, N is the surface’s normal (see Eq. (1)), and B :=
t ×N is the respective binormal. We further define unit vectors ei and ei+1 along the straight-
line segments (see Fig. 1) given the positions of all geodesic boundary points on the surfaces
and the positions of the points O and I .

At the path’s solution configuration, all transitions between straight-line segments and
adjacent geodesics are collinear. Thus the projections of the unit vectors of adjacent straight-
line segments onto the normal and binormal vectors of the geodesics’ boundary-point trihe-
dra vanish. Figure 1 shows a collinear transition at P i and a collinearity condition violation
at Qi . We use the collinearity conditions to measure the deviation of a candidate path from
the solution path and define a local path-error function [47]

εi
(
qi−1, qi, qi+1

) :=

⎡

⎢⎢
⎣

ei · Ni
P

ei · Bi
P

ei+1 · Ni
Q

ei+1 · Bi
Q

⎤

⎥⎥
⎦ (14)

on each surface Si , where · is the scalar-product operator. Note that εi is a function of qi−1

only if i > 1, and a function of qi+1 only if i < n. Assembling the local path errors (Eq. (14))
as well as the geodesics’ parameters (Eq. (11)) into global vectors
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Fig. 1 Example of a collinear transition between the geodesic γ i and the straight-line segment ei at the
geodesic’s start point P i , and a noncollinear transition between γ i and ei+1 at the geodesic’s end point Qi .
The deviation from collinearity of each transition is measured by projecting the unit vectors of adjacent
straight-line segments onto the normal and binormal vectors of the geodesic’s boundary-point trihedra, yield-
ing a local path-error function εi for each geodesic

ε(q) :=

⎡

⎢⎢
⎢
⎣

ε1

ε2

...

εn

⎤

⎥⎥
⎥
⎦

∈ R
4n×1, q :=

⎡

⎢⎢
⎢
⎣

q1

q2

...

qn

⎤

⎥⎥
⎥
⎦

∈R
5n×1, (15)

yields the global nonlinear constraint equation system for the global path error ε of the
muscle path

ε(q) = 0. (16)

Our approach to compute the locally shortest path between O and I is to apply a gradient-
based root-finding method for finding all 5n unknowns in q that fulfill the 4n collinearity
constraints in Eq. (16). Equation (16) must be solved at every simulation time step, thus
it can be considered as independent of time for the root-finding iterations (points O and I

as well as the surfaces Si can be considered as fixed). Equation (16) contains n more un-
knowns than equations, where 2n unknowns are pairwise dependent on each other due to
the unit-speed constraint Eq. (10). A direct solution of Eq. (16) for q would require adding
the n unit-speed constraints (see Eq. (10)) to form a regular equation system. However, this
would significantly increase the complexity of the solution approach, and also make it de-
pendent on the choice of the surface coordinates (u, v). Instead, our approach consists in (i)
introducing a minimal set of four natural geodesic variations of the five parameters defining
each geodesic, which are independent both of each other and the surface coordinates; and
(ii) computing the derivative of the global path error with respect to the natural variations to
obtain the gradient of the path error. Note that one of the four natural geodesic variations will
be nonholonomic. Nevertheless, for notational convenience, we will use the term derivative
in the sense of a velocity-transmission coefficient relating output variations to corresponding
input variations.

We introduce the following natural variations of the geodesic’s parameters: (i) the in-
finitesimal displacement dsi

P of the geodesic’s start point P i in direction of the tangent t iP ;
(ii) the infinitesimal displacement dβi

P of P i in direction of the binormal Bi
P ; (iii) the in-

finitesimal clockwise rotation dθ i of the geodesic’s initial direction about the normal Ni
P ;

and (iv) the infinitesimal length increment d�i
γ of the geodesic at point Qi when point P i is

fixed. For each geodesic, we obtain a vector of four independent natural geodesic variations
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Fig. 2 General solution flow of a single Newton step k. For a given set of geodesic parameters q(k) , a
geodesic engine computes all local surface geodesics, the boundary-point trihedra and their derivatives with
respect to the natural geodesic variations. From the spatial positions of the boundary point trihedra and their
derivatives, the global path error and the Jacobian are assembled. According to Newton’s method, a linear
equation system is solved to compute the natural corrections 	ξ(k) to correct the positions of all geodesics.
These corrections 	ξ(k) are mapped back to corrections 	q(k) of the geodesic parameters to obtain a new
set q(k+1) of geodesic parameters for the next iteration step k + 1

dξ i := [
dsi

P dβi
P dθ i d�i

γ

]T
. (17)

Accordingly, we obtain the global path-error Jacobian

J := ∂ε

∂ξ
∈R

4n×4n, dξ :=

⎡

⎢
⎢⎢
⎣

dξ 1

dξ 2

...

dξn

⎤

⎥
⎥⎥
⎦

∈R
4n×1, (18)

mapping natural geodesic variations to path-error variations. Given a reasonably close initial
guess for q , the Jacobian J can be used in a gradient-based root-finding method to compute
finite corrections 	ξ of the geodesics’ initial conditions until Eq. (16) is fulfilled. Here we
will use Newton’s method to accomplish this task. Figure 2 gives an overview of the four
main steps for a single path-correction iteration k: (i) shooting geodesics on all surfaces
for a given set of parameters q(k) and computing the boundary-point trihedra as well as
their derivatives; (ii) evaluating the global path error ε(k) and the path-error Jacobian J(k);
(iii) computing the natural path corrections 	ξ(k); and (iv) using the natural corrections 	ξ(k)

to compute the new set of geodesic parameters q(k+1). In this paper, it will be assumed that
the initial guess q(0) is sufficiently close to the solution, i.e., close enough so that Newton’s
method converges to the solution. During a simulation, this can be achieved by using the
solution of a previous time step as the initial guess for the current time step.

The following Sect. 3 is concerned with computing the partial derivatives of the
boundary-point trihedra with respect to the natural geodesic variations, which are required
to compute the path-error Jacobian J explicitly. A detailed discussion of the structure of
J as well as the mapping from finite natural corrections to corrections of the geodesics’
parameters will be given in Sect. 4.
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3 Derivatives of the boundary-point trihedra

The global path-error Jacobian J comprises the partial derivatives of the local path errors
in Eq. (14) with respect to the natural geodesic variations in Eq. (17). Accordingly, we
require eight partial derivatives per geodesic: the partial derivatives of the two boundary-
point trihedra with respect to the four natural geodesic variations. This section thus contains
four subsections, each describing the partial derivatives of the trihedra with respect to one
natural variation. Note that we will only consider a generic geodesic and thus omit the index
i throughout the whole section for notational convenience.

When the parameters of a local geodesic are varied by dξ , its boundary point trihedra KP

and KQ move along particular curves on S. We are interested in the differential geometry
of these curves to compute the variations dKP and dKQ in terms of the natural geodesic
variations dξ . The previously defined trihedra KP and KQ can be regarded as moving Dar-
boux trihedra on S. For a general Darboux trihedron {x̃, t̃ , Ñ , B̃} that travels along some
arc-length parameterized curve σ(·) on a surface, the following differential relationships
hold [50]

d

d(·)

⎡

⎢
⎢
⎣

x̃

t̃

Ñ

B̃

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0
0 κn κg

−κn 0 −τ

−κg τ 0

⎤

⎥
⎥
⎦

σ ⎡

⎣
t̃

Ñ

B̃

⎤

⎦ . (19)

The tilde notation in Eq. (19) distinguishes vectors of the general trihedron from vectors
of the trihedra at the geodesic’s boundary points. In the above Eq. (19), κσ

g is the geodesic
or tangential curvature, τ σ is the geodesic torsion, and κσ

n is the normal curvature of the
surface. The latter two are easily evaluated by the general formulas [49, 50]

τ = (FL − EM)du2 + (GL − EN)dudv + (GM − FN)dv2

√
EG − F2(E du2 + 2 F dudv + G dv2)

(20)

and

κn = L du2 + 2 M dudv + N dv2

E du2 + 2 F dudv + G dv2
. (21)

In the above Eqs. (20) and (21), E = xu · xu, F = xu · xv , G = xv · xv and L = N · xuu,
M = N · xuv , N = N · xvv are the coefficients of the first and second fundamental forms of
S, respectively, where N is the surface normal. Both τ and κn only depend on a point on S

and the direction of the curve passing through that point, thus these quantities can be eval-
uated easily at the geodesic’s boundary points. However, evaluating the geodesic curvature
κg requires more knowledge about the curve considered. In what follows, we will compute
κg of the curves along which KP and KQ travel when the geodesic’s initial conditions are
varied.

3.1 Variation of the geodesic’s start point position in tangential direction

Stating the global path-error Jacobian explicitly requires information about how the bound-
ary point trihedra KP and KQ displace when the geodesic parameters are varied by dξ . This
subsection describes how the geodesic’s boundary point trihedra KP and KQ displace when
the initial start point P is displaced in tangential direction tP by dsP . For a tangential dis-
placement dsP of the geodesic’s start point P , the trihedron KP travels along the geodesic γ .
Given constant length �γ of the geodesic, the end point Q displaces in direction of tQ by the
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same amount. Let dsQ and dβQ be arc length elements on S at Q in direction of tQ and BQ,
respectively. Then, the following simple relations hold:

∂sQ

∂sP

= 1,
∂βQ

∂sP

= 0. (22)

Since γ is a geodesic, it has zero geodesic curvature. Inserting κ
γ
g = 0 into Eq. (19) yields

the derivatives ∂KP /∂sP and ∂KQ/∂sP expressed in KP and KQ

∂

∂sP

⎡

⎢⎢
⎣

x

t

N

B

⎤

⎥⎥
⎦

P,Q

=

⎡

⎢⎢
⎣

1 0 0
0 κn 0

−κn 0 −τ

0 τ 0

⎤

⎥⎥
⎦

γ

P,Q

⎡

⎣
t

N

B

⎤

⎦

P,Q

. (23)

3.2 Variation of the geodesic’s start point position in binormal direction

For the evaluation of the variations dKP and dKQ with respect to a binormal displacement
of P , we assume that the geodesic γ is parallel-transported along another geodesic γ ⊥
through P orthogonal to γ in direction of BP (see Fig. 3). The parallel transport of γ along
γ ⊥ ensures that the initial direction of γ is (locally) kept constant, since γ ⊥ has vanishing
tangential curvature κ⊥

g = 0.
At point P , the tangent of γ ⊥ is equal to the binormal of γ , the binormal of γ ⊥ is equal

to the negative tangent of γ , and both surface normal vectors are equal. Thus for ∂KP /∂βP

expressed in KP it holds

∂

∂βP

⎡

⎢⎢
⎣

x

t

N

B

⎤

⎥⎥
⎦

P

=

⎡

⎢⎢
⎣

0 0 1
0 −τ 0
τ 0 −κn

0 κn 0

⎤

⎥⎥
⎦

⊥

P

⎡

⎣
t

N

B

⎤

⎦

P

, (24)

where κ⊥
n,P and τ⊥

P are the normal curvature and the geodesic torsion of γ ⊥ at P in direction
of BP . Note that two orthogonal curves through one point have the same geodesic torsion but
with a different sign. Thus it holds τ⊥

P = −τ
γ

P , which can be shown by computing ∂tP /∂βP

explicitly. By Young’s theorem, it holds

∂tP

∂βP

= ∂

∂βP

(
∂xP

∂sP

)

= ∂

∂sP

(
∂xP

∂βP

)
= ∂

∂sP

(BP ) = τ
γ

P NP . (25)

Comparing Eq. (25) with Eq. (24) confirms τ⊥
P = −τ

γ

P .
We still require information about how dβP transmits through the geodesic to a displace-

ment of the end point trihedron KQ. This transmission is given by the variational vector field
xβP

(s) along γ , for whose derivation we briefly review Jacobi fields. In general, variational
vector fields J (s) ∈R

3 along surface geodesics fulfill the Jacobi equation (see [51])

∇2J (s) + K(s) (t (s) × J (s)) × t (s) = 0, (26)

where

K = L N − M2

E G − F2
(27)
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Fig. 3 A binormal displacement
dβP of the geodesic’s start point
trihedron KP causes a binormal
displacement dβQ of the end
point trihedron KQ. The
transmission from dβP to dβQ is
described by the scalar Jacobi
differential Eq. (33)

is the Gaussian curvature (see [49, 52]) and ∇ denotes a covariant derivative (see [51]) with
respect to arc length s. The covariant derivative is equal to the usual Euclidean derivative
projected onto the tangent space of the surface. An important property of Jacobi fields is that
they fulfill the following equation (see [53])

J (s) · t (s) = J (0) · t (0) + (
J ′(0) · t (0)

)
s, (28)

which relates the behavior of a Jacobi field at any point along the geodesic with its behav-
ior at s = 0. For the considered binormal variation of point P , we are particularly inter-
ested in the behavior of J (s) = xβP

(s). At s = 0, by definition, xβP
(0) = BP and t (0) = tP ,

yielding

xβP
(0) · t (0) = 0. (29)

Since xβP
(0) = BP we have from Eq. (23) that ∂BP /∂sP = τ

γ

P NP and thus

x ′
βP

(0) · t (0) = 0. (30)

Substituting J (s) = xβP
(s) in Eq. (28) and inserting Eqs. (29) as well as (30) yields

xβP
(s) · t (s) = 0, s ∈ [0, �γ ]. (31)

Equation (31) shows that the sought variational vector field xβP
(s) is always orthogonal to

the geodesic (see Fig. 3), or zero at points conjugate to P (see [51]). Accordingly, xβP
(s) is

a multiple of some scalar a(s) and the binormal B(s)

xβP
(s) = a(s)B(s), a(s) ∈R, s ∈ [0, �γ ]. (32)

Inserting J (s) = a(s)B(s) into Eq. (26) and multiplying it by B(s) simplifies the vector
Jacobi Eq. (26) to a scalar Jacobi equation

a′′(s) + K(s)a(s) = 0, (33)

with

a(s) = xβP
(s) · B(s). (34)

Note that a′(s) = ∇a(s) so we prefer the prime for notational convenience.
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Solving the scalar Jacobi Eq. (33) requires the two initial conditions a(0) and a′(0). Since
xβP

(0) = BP we directly obtain a(0) = 1 by evaluating Eq. (34) at s = 0. Furthermore, we
obtain by differentiating Eq. (34)

a′(s) = ∇xβP
(s) · B(s) + xβP

(s) · ∇B(s). (35)

Since B(s) is the parallel transport of BP along γ , it holds ∇B(s) = 0 and the latter term
on the right hand side of Eq. (35) vanishes. Inserting ∇xβP

(0) = ∇B(0) = 0 into Eq. (35)
directly yields a′(0) = 0. Given the initial conditions of Eq. (33), we obtain the relation
between binormal displacements of the start point P and the end point Q by evaluating
Eq. (33) at s = �γ

∂βQ

∂βP

= a(�γ ) = aQ. (36)

We are now in a position to compute ∂KQ/∂βP using the Darboux Eqs. (19). Let α denote
the curve along which KQ moves when point P is displaced in binormal direction. At Q,
the tangent of α is equal to the binormal of γ , the binormal of α is equal to the negative
tangent of γ , and both normals are equal. Thus it holds for ∂KQ/∂βQ expressed in KQ

∂

∂βQ

⎡

⎢
⎢
⎣

x

t

N

B

⎤

⎥
⎥
⎦

Q

=

⎡

⎢
⎢
⎣

0 0 1
0 −τ κg

τ 0 −κn

−κg κn 0

⎤

⎥
⎥
⎦

α

Q

⎡

⎣
t

N

B

⎤

⎦

Q

. (37)

The normal curvature κα
n,Q is easily computed using Eq. (21). For the geodesic torsion it

holds τα
Q = −τ

γ

Q, which is already known after evaluating Eq. (23) at Q. We still require
the geodesic curvature κα

g,Q of α at Q. To derive it, we use the fact that x(s,βP ) is an or-
thogonal surface parameterization along the geodesic γ . In the orthogonal surface parame-
terization x(s,βP ), it holds F(s,βP ) = xs · xβP

= 0, and the geodesic curvature κα
g is given by

(see [51])

κα
g = G(s,βP )

s

2 G(s,βP )
√

E(s,βP )
. (38)

Since E(s,βP ) = xs · xs = 1 and G(s,βP ) = a B · a B = a2, Eq. (38) simplifies to

κα
g = a′

a
. (39)

Note that κα
g vanishes for �γ = 0 which is consistent with the previously made assumption

that γ is parallel transported along a binormal geodesic γ ⊥. Inserting Eq. (39) into Eq. (37)
and multiplying by aQ = ∂βQ/∂βP yields the sought derivative ∂KQ/∂βP expressed in KQ

∂

∂βP

⎡

⎢⎢
⎣

x

t

N

B

⎤

⎥⎥
⎦

Q

=

⎡

⎢⎢
⎣

0 0 a

0 a τγ a′
−a τγ 0 −a κα

n

−a′ a κα
n 0

⎤

⎥⎥
⎦

Q

⎡

⎣
t

N

B

⎤

⎦

Q

, (40)

where τα = −τ γ was inserted.
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Fig. 4 A clockwise rotation dθ

of the geodesic’s initial direction
tP about the surface normal NP

causes a binormal displacement
dβQ of the geodesic’s end point
trihedron KQ along a geodesic
circle ρ with its center at P . The
relation between an arc length
element dβQ of ρ and the
rotation dθ is given by r(s), the
solution of the scalar Jacobi
differential Eq. (46)

3.3 Variations of the geodesic’s initial direction

When the initial direction of γ is rotated by an angular increment dθ , measured clockwise
about the surface normal NP , the following formulas hold for ∂KP /∂θ (see Fig. 4)

∂

∂θ

⎡

⎢⎢
⎣

x

t

N

B

⎤

⎥⎥
⎦

P

=

⎡

⎢⎢
⎣

0
B

0
−t

⎤

⎥⎥
⎦

P

. (41)

We are further interested in how a rotation dθ affects the trihedron KQ. Again, we derive
the necessary information about the respective variational vector field xθ (s) from the vector
Jacobi Eq. (26) and Eq. (28). First consider the behavior of xθ at point P . By definition of
the variation xθ , it holds

xθ (0) = 0 . (42)

Since x ′(0) is equal to the geodesic’s tangent tP at point P , it holds (see Eq. (41))

x ′
θ (0) = ∂tP

∂θ
= BP . (43)

Inserting Eqs. (42) and (43) into Eq. (28) yields

xθ (s) · t (s) = 0, s ∈ [0, �γ ]. (44)

Equation (44), known as the Lemma of Gauss, ensures that xθ is orthogonal to the geodesic’s
tangent, or zero at P and points conjugate to P . Accordingly, all points on the geodesic keep
a constant distance to the point P when the initial direction is rotated (see Fig. 4). The curves
of constant geodesic length are called geodesic circles.

By the Lemma of Gauss (Eq. (44)), xθ is always parallel to the geodesic’s binormal, or
zero. Thus xθ can be written as

xθ (s) = r(s)B(s), r(s) ∈ R, s ∈ [0, �γ ], (45)

which is analogous to Eq. (32). Inserting Eq. (45) into the vector Jacobi Eq. (26) and multi-
plying by B(s) yields again a simplified scalar Jacobi equation

r ′′(s) + K(s) r(s) = 0 (46)

analogous to Eq. (33). Solving this scalar Jacobi Eq. (46) requires the two initial conditions
r(0) and r ′(0). Noting that ∇B(s) = 0 (see discussion of Eq. (35)), we have
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r(s) = xθ (s) · B(s), (47)

r ′(s) = ∇xθ (s) · B(s), (48)

which, together with Eqs. (42) and (43), yield the sought initial values r(0) = 0 and
r ′(0) = 1. The relationship between a rotation dθ and the displacement dβQ of Q along
the geodesic circle with �γ = const. is obtained by evaluating Eq. (46) at s = �γ

∂βQ

∂θ
= r(�γ ) = rQ. (49)

We can now compute ∂KQ/∂θ analogously to the derivative ∂KQ/∂βP described in
Sect. 3.2. Let ρ denote the geodesic circle along which KQ travels when the initial direction
of γ is rotated. The parameterization x(s, θ) is orthogonal, thus the geodesic curvature of ρ

is given by

κρ
g = G(s,θ)

s

2 G(s,θ)
√

E(s,θ)
= r ′

r
. (50)

For the derivative ∂KQ/∂θ expressed in KQ it holds

∂

∂θ

⎡

⎢
⎢
⎣

x

t

N

B

⎤

⎥
⎥
⎦

Q

=

⎡

⎢
⎢
⎣

0 0 r

0 r τ γ r ′
−r τ γ 0 −r κρ

n

−r ′ r κρ
n 0

⎤

⎥
⎥
⎦

Q

⎡

⎣
t

N

B

⎤

⎦

Q

. (51)

Note that for �γ = 0 it holds P = Q. Inserting the Jacobi field’s initial conditions r(0) = 0
and r ′(0) = 1 into Eq. (51) confirms Eq. (41).

There is an intuitive interpretation of the quantities κρ
n , κρ

g , and rQ of the geodesic circle
ρ with radius �γ . While κρ

n is the normal curvature of ρ required such that KQ stays on the
surface, κρ

g is the tangential curvature of ρ required such that KQ keeps a constant distance
to P , i.e., stays on the geodesic circle. The quantity rQ = ∂βQ/∂θ determines the speed of
KQ in terms of the rotational speed of the geodesic’s initial direction.

3.4 Variation of the geodesic’s length

Recall that d�γ is a length increment of the geodesic for a fixed start point P . Accordingly,
it holds d�γ = dsQ and it follows

∂KQ

∂�γ

= ∂KQ

∂sQ

. (52)

4 Assembly

This section describes the structure of the global path-error Jacobian in Eq. (18), and con-
tains the derivatives of the straight-line unit vectors in Eq. (14), which are required to com-
plete the Jacobian. Moreover, it describes the mapping from natural geodesic corrections to
a new set of geodesic parameters for the Newton steps.
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4.1 Structure of the global path-error Jacobian

Due to the dependency of local path errors on the parameters of directly neighboring
geodesics, the global path-error Jacobian J = ∂ε/∂ξ has band structure with five lower scalar
diagonals and three upper scalar diagonals

J =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

∂ε1

∂ξ1
∂ε1

∂ξ2

∂ε2

∂ξ1
∂ε2

∂ξ2
∂ε2

∂ξ3

. . .
. . .

. . .
∂εi

∂ξ i−1
∂εi

∂ξ i
∂εi

∂ξ i+1

. . .
. . .

. . .
∂εn−1

∂ξn−2
∂εn−1

∂ξn−1
∂εn−1

∂ξn

∂εn

∂ξn−1
∂εn

∂ξn

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (53)

A general block-row in J comprises three submatrices: two coupling matrices ∂εi/∂ξ i−1

if i > 1, ∂εi/∂ξ i+1 if i < n, and local path-error Jacobians ∂εi/∂ξ i . The j th columns (j =
1, . . . ,4) of the ith local path-error Jacobian and the respective coupling matrices are given
by

∂εi

∂ξ i
j

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

∂Ni
P

∂ξ i
j

· ei + Ni
P · ∂ei

∂ξ i
j

∂Bi
P

∂ξ i
j

· ei + Bi
P · ∂ei

∂ξ i
j

∂Ni
Q

∂ξ i
j

· ei+1 + Ni
Q · ∂ei+1

∂ξ i
j

∂Bi
Q

∂ξ i
j

· ei+1 + Bi
Q · ∂ei+1

∂ξ i
j

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, (54)

∂εi

∂ξ i−1
j

=
[
Ni

P · ∂ei

∂ξ i−1
j

Bi
P · ∂ei

∂ξ i−1
j

0 0
]T

, (55)

∂εi

∂ξ i+1
j

=
[

0 0 Ni
Q · ∂ei+1

∂ξ i+1
j

Bi
Q · ∂ei+1

∂ξ i+1
j

]T
, (56)

where the derivatives of Ni
P , Bi

P and Ni
Q, Bi

Q with respect to ξ i are given in Sect. 3. We still
require explicit derivatives of the straight-line unit vectors ei and ei+1 with respect to ξ i−1,
ξ i , and ξ i+1 to complete the Jacobians and the coupling matrices.

4.2 Derivatives of the unit vectors along the straight-line segments

The unit vectors ei and ei+1 along the straight-line segments between two surfaces are de-
fined as

ei = xi
P − xi−1

Q

‖xi
P − xi−1

Q ‖ , (57)

ei+1 = xi+1
P − xi

Q

‖xi+1
P − xi

Q‖ , (58)

where x needs to be evaluated with respect to some common coordinate system. Note that
for i = 1 and i = n, the origin point O and the insertion point I are used to compute the
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unit vectors. The nonzero derivatives of the unit vectors in Eqs. (57) and (58) with respect
to ξ i−1, ξ i , and ξ i+1 are given by

∂ei

∂ξ i
j

=
∂xi

P

∂ξ i
j

− ei
(
ei · ∂xi

P

∂ξ i
j

)

�i
, (59)

∂ei

∂ξ i−1
j

=
− ∂xi−1

Q

∂ξi−1
j

+ ei
(
ei · ∂xi−1

Q

∂ξi−1
j

)

�i
, (60)

∂ei+1

∂ξ i
j

=
− ∂xi

Q

∂ξ i
j

+ ei+1
(
ei+1 · ∂xi

Q

∂ξ i
j

)

�i+1
, (61)

∂ei+1

∂ξ i+1
j

=
∂xi+1

P

∂ξ i+1
j

− ei+1
(
ei+1 · ∂xi+1

P

∂ξ i+1
j

)

�i+1
, (62)

where �i is the length of the ith straight-line segment. Equations (59)–(62) can be evaluated
using the derivatives of the geodesics’ boundary-point trihedra given in Sect. 3. Note that
Eq. (62) is equal to Eq. (59) up to the index and thus does not need to be recomputed
explicitly.

4.3 Updating the geodesics’ initial conditions

At a given iteration step k, the iterative Newton solver computes a global vector

	ξ(k) = −J−1
(k) ε(k) (63)

of finite natural path corrections (see Fig. 2) to adapt the initial conditions of all local
geodesics. For each geodesic γ i , the corrections are given by

	ξi
(k) = [

	si
P 	βi

P 	θi 	�i
γ

]T

(k)
, (64)

which are used to compute the start-point coordinates (uP , vP )i
(k+1), the direction

(u′
P , v′

P )i
(k+1), and the length �i

γ,(k+1) of the new geodesic γ i
(k+1). Note that the derivatives

(u′
P , v′

P )i
(k+1) need to be normalized such that γ i

(k+1) has unit speed, i.e., ‖x ′‖i
(k+1) = 1 (see

Eq. (10)). In the following, we will discuss the parameter correction of a single geodesic,
thus we will omit the index i again for notational simplicity.

The mapping from natural coordinate corrections (	sP ,	βP )(k) to corrections
(	uP ,	vP )(k) requires the general coordinate transformation ∂(u, v)/∂(s,β). To derive
it, we consider a differential dx and express it both in the surface basis {xu, xv} and the
natural basis {t,B} along the geodesic, yielding

dx = [
xu xv

][
du

dv

]
= [

t B
][

ds

dβ

]
. (65)

Pairwise multiplication of Eq. (65) with xu and xv and solving for (du,dv) yields the coor-
dinate transformation

[
du

dv

]
=

[
E F
F G

]−1 [
t · xu B · xu

t · xv B · xv

]

︸ ︷︷ ︸
∂(u, v)/∂(s,β)

[
ds

dβ

]
. (66)
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Thus for the coordinates (uP , vP )(k+1) of the new start point P(k+1) it holds
[

uP

vP

]

(k+1)

=
[

uP

vP

]

(k)

+ ∂(uP , vP )

∂(sP ,βP ) (k)

[
	sP

	βP

]

(k)

. (67)

The correction of the geodesic’s initial direction requires three steps. The first step con-
sists in rotating the tangent vector tP,(k) at point P(k) by the computed angular difference
	θ(k). For the rotated vector t̂P ,(k) at P(k) it holds

t̂P ,(k) = tP,(k) cos	θ(k) + BP,(k) sin	θ(k). (68)

In the second step, t̂P ,(k) is parallel transported to the new point P(k+1) with a constant orien-
tation in space according to the Levi-Civita parallelism [54]. At the new point, t̂P ,(k) is not
tangential to the surface anymore, thus it has two tangential components with magnitudes
μ, ν, and one normal component with magnitude λ

t̂P,(k) = [
xu xv N

]
P,(k+1)

⎡

⎣
μ

ν

λ

⎤

⎦ . (69)

Scalar multiplication of Eq. (69) with (xu)P,(k+1) and (xv)P,(k+1) yields
[

t̂P ,(k) · (xu)P,(k+1)

t̂P ,(k) · (xv)P,(k+1)

]
=

[
E F

F G

]

P,(k+1)

[
μ

ν

]
(70)

and thus for the tangential components μ and ν of t̂P ,(k) at P(k+1) it holds
[

μ

ν

]
=

[
E F

F G

]−1

P,(k+1)

[
t̂P ,(k) · (xu)P,(k+1)

t̂P ,(k) · (xv)P,(k+1)

]
. (71)

The third step consists in normalizing μ and ν such that γ(k+1) has unit speed. The new
components u′

P,(k+1) and v′
P,(k+1) that yield a unit-speed geodesic starting at P(k+1) are given

by
[

u′
P

v′
P

]

(k+1)

=
(

1

Eμ2 + 2 Fμν + Gν2

)

P,(k+1)

[
μ

ν

]
. (72)

Finally, the computation of the new length �γ,(k+1) is straightforward

�γ,(k+1) = �γ,(k) + 	�γ,(k). (73)

5 Rate of length change

In the previous sections, it was assumed that all surfaces Si as well as the origin point O

and insertion point I are fixed. In this section, we also consider the spatial motion of all
objects and derive an explicit formula for the path’s exact rate of length change. To this end,
we assume that the global path error is exactly zero so ε = 0 at any instant of time, i.e., the
considered path is always a global geodesic between O and I .

The total muscle path is a concatenation of n + 1 straight-line segments of length �i and
n geodesic segments of length �i

γ . Hence its total length is given by

L =
n+1∑

i=1

�i +
n∑

i=1

�i
γ . (74)
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Fig. 5 Decomposition of the
absolute boundary-point
velocities vi

P
and vi

Q
into two

components: absolute rigid-body
velocities vi

P,rb, vi
Q,rb of the

surface at P i and Qi and relative
boundary-point velocities vi

P,rel,

vi
Q,rel of the geodesic’s boundary

points with respect to the surface

Accordingly, the rate of length change L̇ of the total path is obtained as the sum of the rates
�̇i and �̇i

γ of the single elements, where the dot notation denotes a time derivative. For a
straight-line segment, the rate of length change is the projection of its absolute end-point
velocities vi−1

Q and vi
P , i.e., measured with respect to an inertially fixed frame, on the unit

vector ei

�̇i = ei · [vi
P − vi−1

Q

]
. (75)

For a geodesic segment, we obtain the rate of length change from the first variation of its arc
length. Let x(s, ε) be a geodesic variation such that γ : x(s,0) is a geodesic (index i omitted
here). The first variation of arc length of γ is given by

δ�γ = [
x ′ · δxε

]�γ

0
−

∫ �γ

0
x ′′ · δxε ds, (76)

where δxε are arbitrary vectors tangential to S. Since the variation is a geodesic, x ′′(s,0) is
normal to S and the integral in Eq. (76) vanishes, yielding for the remaining terms

δ�γ = x ′(�γ ) · δxε(�γ ) − x ′(0) · δxε(0). (77)

Substituting δ�γ = d�γ , x ′(�γ ) = tQ, δxε(�γ ) = dxQ, x ′(0) = tP , δxε(0) = dxP , and dividing
by dt gives an explicit expression for the rate of length change of the ith geodesic segment

�̇i
γ = t iQ · vi

Q,rel − t iP · vi
P,rel. (78)

Here, vi
P,rel and vi

Q,rel are the boundary-point velocities relative to the surface Si , i.e., mea-
sured with respect to the surface frame Ki

S (see Fig. 5). The relation between the absolute
boundary-point velocities in Eq. (75) and the relative components in Eq. (78) is given by

vi
P = vi

P,rb + vi
P,rel, (79)

vi
Q = vi

Q,rb + vi
Q,rel, (80)

where vi
P,rb and vi

Q,rb are the absolute rigid-body velocities of the surface beneath the
geodesic segment at P i and Qi (see Fig. 5).

After inserting Eqs. (75) and (78) into the time derivative of Eq. (74), also using Eqs. (79)
and (80) as well as the relations t iP = ei and t iQ = ei+1 (which hold for the solution path
with ε = 0), all terms comprising the relative velocities vi

P,rel and vi
Q,rel cancel pairwise out.

Consequently, the total rate of length change becomes

L̇ = −e1 · vO +
(

n∑

i=1

ei · vi
P,rb − ei+1 · vi

Q,rb

)

+ en+1 · vI , (81)
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where vO and vI are the absolute velocities of the origin point O and the insertion point I

of the muscle.
Equation (81) shows that the rate of length change L̇ depends solely on the rigid-body

velocities of the surface points beneath the geodesics’ boundary points and the velocities
of the origin and insertion points. Equation (81) is independent of the formulation used to
compute the path itself and computationally inexpensive, making a numerical differentiation
of path length unnecessary.

6 Implementation and computational benchmarks

We have implemented the Natural Geodesic Variation (NGV) method in the C++ multibody
simulation environment Mobile [55]. Despite the extensive use of differential geometry, the
method’s algorithmic implementation is surprisingly straightforward. It comprises

1. A set of smooth surface objects, each capable of calculating elementary differential-
geometric entities such as the surface normal vector, first and second fundamental forms,
normal curvature, geodesic torsion, and Gaussian curvature;

2. A geodesic shooter that computes one geodesic and the two associated Jacobi fields on
each surface given the geodesic’s starting point, direction, and length. The shooter also
computes the Darboux trihedra and their derivatives at the geodesic’s boundary points
with respect to the four natural geodesic variations;

3. A global equation assembler that computes (a) the straight-line segments to evaluate the
path error using the Darboux trihedra, and (b) the banded path-error Jacobian explicitly
using the derivatives of the Darboux trihedra and the derivatives of the straight-line unit
vectors;

4. An iterative solver which computes a set of natural geodesic corrections to correct the
parameters of all geodesics until the path error vanishes and the shortest path is found;
and

5. An explicit evaluator for the path’s rate of length change, if required.

Accuracy, ability to wrap around complex geometry, and computational speed of the
method have been tested in three simulation benchmarks which cover scalable and nontrivial
applications. The benchmarks were performed on an Intel� Core™ i7-2700K @3.50 GHz
with 8 GB RAM running Windows 7 Professional, 64 bit. We used an LSodar integrator
with relative and absolute tolerances of 1.0E-9 to numerically solve the geodesic Eqs. (2),
(3) and the Jacobi field Eqs. (33), (46). Lapack’s band matrix routine DGBSV was used to
solve the linear equation system for the Newton iterations. In all benchmark simulations, we
used the solution parameters of a previous time step as the initial guess for the current time
step for the Newton iterations, with manually determined initial conditions at the start (see
Sect. 7).

The first benchmark evaluates the accuracy of our NGV method and compares it with
a nonlinear energy-minimization approach. The second benchmark contains multiple com-
plex wrapping obstacles including a surface patch fitted to a human ribcage to evaluate our
method’s ability to wrap over biologically accurate surfaces. In the third benchmark, we
measured the computational costs of our method with respect to the number of wrapping
surfaces.
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Fig. 6 Simple upper limb
model: (left) the path was
computed by a nonlinear
optimization routine which
minimizes the sum of squared
energies of the path segments
(here: m = 15 vertices);
(right) the path was computed by
our NGV method. It consists of
three straight lines and two local
surface geodesics

6.1 Accuracy benchmark

We simulated a widely used sphere-cylinder upper-limb model (see, e.g., [39]) to evaluate
the accuracy of our algorithm when computing muscle paths, their lengths, and their rates
of length change. In our benchmark, the model consists of a sphere with radius 8.0 cm, a
cylinder with radius 4.0 cm, and a muscle path which wraps over both surfaces (Fig. 6). The
cylinder is rigidly attached to the sphere such that the sphere’s center lies in the symmetry
axis of the cylinder. The model performed spatial sinusoidal rotations about the center of
the sphere while the path’s origin was fixed with respect to ground and the path’s insertion
point had a constant position with respect to the cylinder. A constant output sampling step
size of 0.02 s was used. The final simulation time was 10.0 s.

For comparison, we implemented an established energy minimization approach, e.g.,
used by [37, 39]. It consists in discretizing the whole muscle path by a variable number m

of lumped elastic elements and minimizing the sum of squared energies subject to unilateral
surface constraint equations. The shortest path is computed by finding the 3m coordinates
of all m path vertices such that the path’s energy is minimal, and no vertex penetrates any
surface. We provided both the gradient of the path energy as well as the gradient of the
surface constraints explicitly. The optimization routine used was NAG e04unc (tolerance set
to 1.0E-9) with disabled command window outputs.

In this benchmark, we applied exactly two Newton iterations per time step resulting in
a maximal path error of 2.04E-9 with an average of 1.45E-10. When a single Newton step
was used, the maximal path error was 1.31E-5 with an average of 4.69E-6. The example
shows that our method solves the shortest path problem with a very high precision in a few
iterations. Accordingly, it is well-suited to compute accurate and smooth solutions for the
muscle’s path length (Fig. 7(a)) and its rate of length change (Fig. 7(c)) using Eq. (81).
In contrast, the energy minimization approach shows approximate and oscillatory behav-
ior (see Fig. 7(b, d)) as it approximates the exact shortest path by a polyline. The energy
minimization method requires a fine path discretization to compute accurate solutions for
the path’s length and its rate of length change (see Fig. 7(b, d)). Independent of the level
of path discretization, energy minimization yields oscillations in the path’s rate of length
change which needs to be computed from finite differences of path length (see Fig. 7(d)).
In our implementation, the energy minimization method was orders of magnitudes slower
than the NGV method, depending on the level of path discretization. Further details on the
computational speed of our method are given in Sect. 6.3.
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Fig. 7 Qualitative comparison between our NGV method and the energy minimization method using m = 5
and m = 15 path vertices. Our method computes smooth and accurate solutions for the path’s length and the
rate of length change. The errors in path length and rate of length change of the energy minimization method
decrease with increasing level of path discretization but the method yields nonsmooth behavior of the path’s
rate of length change independently of the level of discretization

Fig. 8 Force-driven wrapping
over nonsimple surfaces,
including a surface patch fitted to
a ribcage. Our method provides
solution continuity as
demonstrated by wrapping the
frictionless path multiple times
over the cylinder, and allows for
wrapping over biologically
accurate surfaces

6.2 Complex geometry benchmark

The second benchmark is a force-driven dynamic simulation including four (nonsimple)
wrapping surfaces: a simple cylinder, a torus, a polynomial surface patch, and an elliptic
torus (see Fig. 8) with high curvature. The surface patch was fitted to the geometry of human
a ribcage using a MATLAB surface fitting routine to demonstrate our method’s ability to
wrap over anatomically realistic, general surfaces. The simulation time was 5.0 s with a
constant output sampling step size of 0.02 s. At the path’s end point, a freely moving point
mass is attached. During simulation, the path was continuously wrapped three times over
the cylinder to demonstrate that our method ensures solution continuity. Recall here that
we assumed a frictionless contact between the path and the objects. The torus was moved
vertically up and down to slide the path across the ribcage patch (see Fig. 8).
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Fig. 9 (Left) Convergence behavior within the first five iterations at initialization of the complex geometry
benchmark. All local path errors converge to zero, with quadratic convergence behavior near the solution.
(Right) Time history of the global path error norm during the simulation, where the path-error tolerance was
set to 1.0E-3. During the simulation, the maximal path error was 3.93E-4 with an average of 2.87E-4

Fig. 10 Wrapping over a variable number of cylinders. Our method computes high-precision solutions for
shortest paths over a large number of wrapping surfaces in real time

Before simulation start, we chose unfeasible initial conditions resulting in a global path-
error norm of ‖ε‖ = 1.53. Seven Newton iterations were used to solve for a feasible path
(until ‖ε‖ = 8.72E-14) at the beginning of the simulation. Figure 9(a) shows the convergence
behavior of the global path error, and the local path error norm of each surface within the
first five iterations at initialization. Newton’s method ensures that the path-error converges
quadratically to zero near the solution. For the rest of the simulation, the path-error tolerance
was set to 1.0E-3. Figure 9(b) displays the resulting time history of the global path-error
norm with a maximum of 3.93E-4 and an average of 2.87E-4.

6.3 Computational speed benchmark

Simulating anatomically complex parts of the body such as the spine or the hand may require
a large number of wrapping surfaces. In this benchmark, we evaluated our method’s com-
putational speed with respect to the number of wrapping surfaces. To this end, we wrapped
a single path over a variable number of cylinders which performed spatial sinusoidal trans-
lations and rotations while the path’s origin and insertion points were fixed. The total simu-
lation time was 40.0 s with a constant output sampling step size of 0.02 s. Figure 10 shows
the benchmark setup for n = 10 cylinders.

The computational costs of the NGV method majorly depend on solving the geodesic
Eqs. (2), (3) together with the Jacobi field Eqs. (33), (46), on computing the nonzero ele-
ments of the path-error Jacobian, and on solving the linear equation system for the Newton
iterations. The computational costs for the individual subtasks of our method grow linearly
with the number of wrapping obstacles, making it well suited for simulating muscle paths
over many surfaces. On simple surfaces such as for the cylinders presented in this bench-
mark, the geodesic equations and the Jacobi field equations can be solved analytically. We
evaluated the method’s computational costs for both solving these equations numerically
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Table 1 Computational costs of
the NGV method vs. the number
of wrapping surfaces, when
analytic and numeric solutions
for the geodesics and the Jacobi
field equations are used

Number of cylinders Real-time factor

Analytic Numeric

100 0.05 0.12

200 0.11 0.24

300 0.16 0.36

400 0.22 0.49

500 0.29 0.62

1000 0.61 1.34

and analytically. Table 1 displays the computational costs for both cases vs. the number
of surfaces, showing that (a) the computational costs of our method grow linearly with the
number of surfaces, and (b) our method allows for wrapping over a large number of surfaces
in real time. In our current implementation, the numeric solution is about two times slower
than the analytic solution.

For this benchmark, we applied a single Newton iteration per simulation time step. For
1000 cylinders using analytic solutions for the geodesics, the maximal path-error norm dur-
ing the whole simulation was 5.4E-4, showing that the path stays close to the exact solution
even when many surfaces are involved.

7 Discussion

The NGV method is based on the modeling assumption that muscles and tendons behave like
one-dimensional massless strings that take the locally shortest path from origin to insertion.
This premise makes it necessary to lump the masses of muscles with body segments, which
causes errors when simulating the dynamics of musculoskeletal systems, as shown by Pai
[56]. Despite their limitations, however, such curved-line muscles are used today in the
majority of models. Even though they are relatively simple, they can adequately recreate
experimentally measured moment arms, as shown, for instance, by Gatti et al. [40].

Since the NGV method is based on Newton’s method, it requires an initialization before
simulation start. The goal of this initialization is to find a reasonable set of geodesics such
that the resulting candidate path converges to the solution. For the benchmark simulations
shown in Sect. 6, we performed the initialization manually. This is a straightforward process
which has to be performed only once per model, but an automated initialization that takes
user-defined wrapping directions into account remains a desirable future extension. After
successful initialization it suffices to use the solution of a previous time step as the initial
guess for the current time step. This procedure was used for all benchmarks in this paper as
it leads to a one to two-step convergence at every simulation time step. Future extensions
might also incorporate velocity constraints for the shortest path to reduce the number of
iterations further.

Muscle paths computed by the NGV method are locally length minimizing, but no infor-
mation about their global optimality is provided. This limitation, however, does not restrict
the method’s use in musculoskeletal models. Quite the contrary, the local convergence to-
gether with the feedback of previous solutions ensures that simulated muscle paths evolve
continuously as the musculoskeletal system moves (see Fig. 8). A further limitation of the
current version of the NGV method is that it does not permit path lift-off and touch-down
events. Though such contact events are rare in biological systems due to connective tissue
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and small relative motion between muscles and wrapping objects, they can happen in mus-
culoskeletal models that contain thin curved-line muscles. We are currently working on an
extension of the NGV method which allows for simulating lift-off and touch-down.

Though all derivations within this paper are based on parametric surfaces, the NGV
method allows for incorporating implicit surfaces as well. This is possible because all in-
trinsic surface quantities, such as Gaussian curvature, normal curvature, or geodesic torsion,
can also be evaluated explicitly on implicit surfaces. In this setting, a comparison between
both surface representations remains a desirable goal for future investigations.

This paper contains the results of three simulation benchmarks that were designed to
allow for an assessment of the method’s generality, solution quality, and absolute compu-
tational speed. These benchmarks indicate that the NGV method is very fast, yet they do
not yield a one-to-one performance comparison with other muscle wrapping methods, such
as the energy minimization method which we implemented for the accuracy benchmark in
Sect. 6.2. This would require carefully chosen benchmark setups and well developed soft-
ware implementations of the compared methods in the same software package. For this
reason, this paper contains no performance comparison.

8 Conclusions

This paper introduced the Natural Geodesic Variation (NGV) method for the very efficient
and fast computation of shortest paths between two points across multiple nonsimple ge-
ometric objects, such as curved-line muscle paths in musculoskeletal models. The method
is based on finding the root of a global path-error constraint equation with a gradient-based
root-finding method using an explicitly determined banded Jacobian. Additionally, a general
formula to compute the shortest path’s exact rate of length change was introduced, making
an approximate computation from finite differences unnecessary.

In contrast to existing methods, the NGV method is both general and fast. It does not rely
on special-case solutions, has no nested loops, and can handle a large number of nonsimple
wrapping surfaces, such as surface patches fitted to bone geometry, in real time. It computes
time-continuous, geometrically smooth, high-precision solutions for the shortest path, its
length, and its rate of length change, which lie within the accuracy of machine precision.
The excellent computational efficiency is achieved by completely taking advantage of the
intrinsic differential geometry of surfaces and geodesics, which allows for computing the
path-error Jacobian for the root-finding method explicitly.

According to the extensive use of differential geometry, the theoretical derivations of the
method are more involved compared to existing methods, yet the final method’s implemen-
tation into biomechanics software packages is surprisingly straightforward. Since this paper
focuses on the method’s mathematical foundations, we have employed standard solvers for
the ODEs and the Newton iterations. We expect that the efficiency can be further improved
by using more advanced numerical tools for these tasks.

Because of its speed and its generality, we believe that the NGV method will become
a useful tool for solving muscle wrapping problems irrespectively of the number and the
shape of the contact surfaces. It will allow biomechanists to develop more accurate, yet fast
musculoskeletal models.
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