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Skeletal muscles harbor quiescent muscle-specific stem cells
(MuSCs) capable of tissue regeneration throughout life. Muscle injury
precipitates a complex inflammatory response in which a multiplicity
of cell types, cytokines, and growth factors participate. Here we show
that Prostaglandin E2 (PGE2) is an inflammatory cytokine that di-
rectly targetsMuSCs via the EP4 receptor, leading toMuSC expansion.
An acute treatment with PGE2 suffices to robustly augment muscle
regeneration by either endogenous or transplanted MuSCs. Loss of
PGE2 signaling by specific genetic ablation of the EP4 receptor inMuSCs
impairs regeneration, leading to decreased muscle force. Inhibition of
PGE2 production through nonsteroidal anti-inflammatory drug (NSAID)
administration just after injury similarly hinders regeneration and
compromisesmuscle strength.Mechanistically, the PGE2 EP4 interaction
causes MuSC expansion by triggering a cAMP/phosphoCREB pathway
that activates the proliferation-inducing transcription factor, Nurr1. Our
findings reveal that loss of PGE2 signaling to MuSCs during recovery
from injury impedes muscle repair and strength. Through such gain- or
loss-of-function experiments, we found that PGE2 signaling acts as a
rheostat for muscle stem-cell function. Decreased PGE2 signaling due to
NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC
function,which determines the outcome of regeneration. Themarkedly
enhanced and accelerated repair of damaged muscles following intra-
muscular delivery of PGE2 suggests a previously unrecognized indica-
tion for this therapeutic agent.
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Satellite cells, also known as muscle stem cells (MuSCs), are
crucial to muscle regeneration. They reside in a quiescent

state in niches juxtaposed to myofibers in muscle tissues, poised to
respond to damage and repair skeletal muscles throughout life (1–
4). Muscle injury precipitates an inflammatory response that is
marked by the sequential infiltration of multiple cell types, including
neutrophils, monocytes, macrophages, T cells, and fibroadipocytes,
and is accompanied by MuSC activation. During this inflammatory
phase, concurrent waves of cytokines and growth factors are released,
including CC-chemokine ligand 2 (CCL2), IL-10, IL-1β, tumor ne-
crosis factor-α (TNFα), and transforming growth factor-β1 (TGFβ1)
(3, 5–10). In addition, prostaglandins, potent lipid mediators of in-
flammation, are synthesized and secreted by immune and myogenic
cells (6, 11). Prostaglandins derive from arachidonic acid, which is
released from membrane phospholipids by phospholipase A2 and
converted by cyclooxygenase enzymes (COX-1 and -2) into prosta-
glandin H2 (PGH2) and subsequently into the different prostaglan-
din subtypes, PGD2, PGE2, PGF2α, PGI2, or thromboxane (TXA2).
Specific to the generation of PGE2 are the prostaglandin synthases
(PGES: mPGES-1, mPGES-2, and cPGES) (11–13).
PGE2 has been associated with muscle regeneration, however

its specific mode of action remains unclear. Conflicting reports

suggest that PGE2 can either promote myoblast proliferation or
differentiation in culture (14–18). In the COX-2–knockout mouse
model, which lacks PGE2, regeneration is delayed. However, the
mechanism by which PGE2 acts could not be established in these
studies due to the systemic constitutive loss of COX-2 and consequent
nonspecific effects on many cell types (15, 19). Similarly, muscle re-
covery after injury was impaired in mice given a COX-2 inhibitor (15).
Additionally, mice treated with nonsteroidal anti-inflammatory drugs
(NSAIDs), which block the production of prostaglandins through
inhibition of COX-1 and COX-2, exhibited regeneration deficits (20,
21). Moreover, NSAIDS lead to an attenuation of exercise-induced
expansion of human satellite cells in biopsies (20). Likewise, gluco-
corticoids, which reduce prostaglandin synthesis by suppressing
phospholipase A2, COX-2, and mPGES1 expression, adversely affect
the recovery of muscle strength in polymyositis patients (22). How-
ever, because the target of NSAIDs and glucocorticoids are the COX
enzymes, this effect could entail a number of prostaglandin subtypes
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in addition to PGE2 and therefore have pleiotropic effects. Thus, to
date, the spatiotemporal effects of PGE2 in muscle regeneration
remain unresolved.
In response to injury, PGE2 is transiently induced in muscle tis-

sues. To establish if PGE2 acts directly on MuSCs, the building
blocks of muscle regeneration, we generated mice in which the
PGE2 receptor, EP4, could be conditionally ablated in MuSCs. In
addition, we established transgenic reporter mice that enabled spe-
cific tracking of MuSC contribution to regeneration dynamically and
sensitively over time by bioluminescence imaging (BLI) after
PGE2 delivery. We coupled these models with assays of muscle force
and found a direct link between the ability of MuSCs to respond to
PGE2 and regeneration, leading to restoration of force. Gain- and

loss-of-function experiments revealed that PGE2 signaling acts as a
rheostat for MuSC function. Our data suggest that PGE2 profoundly
impacts regeneration and has therapeutic promise.

Results
A Surge of PGE2 in Damaged Muscle Tissues Accelerates MuSC
Proliferation. We sought to identify an activator of MuSC function
by capitalizing on an inflammatory response that mediates muscle
regeneration. Because muscle injury triggers an immediate in-
flammatory response (5, 7, 8, 23), we hypothesized that a transiently
induced inflammatory modulator could regulate MuSC function
and play a crucial role in regeneration. We performed qRT-PCR
and detected increased levels of the Ptger4 receptor (EP4) for
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Fig. 1. Transient increase in PGE2 in damaged muscle tissues accelerates MuSC proliferation. (A) Expression of Ptger4 in freshly isolated MuSCs from uninjured
mouse hindlimbs (Fresh MuSCs), MuSCs cultured for 2 d on hydrogels (Cultured MuSCs), primary myoblasts cultured in growth medium (Myoblasts GM), and
differentiating primary myoblasts cultured in differentiation medium for 24 h (Myoblasts DM) (n = 3 biological replicates per condition). (B) PGE2 levels assayed by
ELISA after tibialis anterior (TA) muscle injury with notexin (n = 4 mice per condition measured). Control refers to the contralateral uninjured leg. (C) Repre-
sentative TA cross-sections of 3 and 6 d after notexin injury. DAPI, blue; LAMININ, white; PGE2, green. (Scale bar, 40 μm.) (D) Expression of prostaglandin syn-
thetizing enzymes Ptges and Ptges2 after TA muscle injury (notexin) (n = 3 mice with two technical replicates). Control refers to the contralateral uninjured leg.
(E) PGE2 levels of conditioned medium from isolated fibers in the presence or absence of indomethacin (Indo) assayed by ELISA (n = 3 mice per condition).
(F) MuSC numbers after 24 h treatment with vehicle or PGE2 (10 ng/mL) and subsequent culture on hydrogel until day 7 (n = 12 mice in four independent
experiments). (G) Trajectories of a MuSC clone treated with vehicle (Top) or PGE2 (Bottom) by time-lapse microscopy for 38 h. (H) Change in MuSC cell counts
(numbers) in clones tracked by time-lapse microscopy after vehicle (Left, n = 40 clones) and PGE2 treatment (Right, n = 44 clones). (I) Plot of time to division after
plating for each MuSC clone treated with vehicle or PGE2. Clones showing a 38-h time to division refers to clones that never divided during the recorded time-
lapse. The lines represent the nonlinear regression curve from Gaussian lognormal fit with R2 = 0.9 (control) and 0.97 (PGE2). (J) Violin plot of time to division after
plating in MuSC clones treated with vehicle or PGE2. (K) Cell sizes of tracked MuSCs treated with vehicle or PGE2. **P < 0.001, ***P < 0.0005 ****P < 0.0001.
Mann–Whitney test (E, J, and K); ANOVA test with Bonferroni correction for multiple comparisons (A, B, and D); paired t test (F). Means + SEM.
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PGE2, a potent lipid mediator during acute inflammation (11), on
isolated MuSCs obtained by dissociating muscle tissue followed by
fluorescence activated cell sorting (FACS) (Fig. 1A). In accordance
with receptor expression, we detected a surge in the levels of
PGE2 in mouse muscle lysates 3 d after injury by standard para-
digms entailing notexin injection or cryoinjury (Fig. 1 B and C and
Fig. S1A). The concomitant transient up-regulation of its synthe-
sizing enzymes Ptges and Ptges2 was also detected (Fig. 1D). Al-
though other cell types within muscles may also produce PGE2 in
response to injury such as endothelial cells, inflammatory cells, and
fibroadipogenic progenitors (FAPs), the myofibers that circum-
scribe MuSCs are a source of PGE2, as observed in conditioned
medium from dissociated myofibers (Fig. 1E). Moreover, upon
treatment of myofibers with indomethacin, a NSAID that inhibits
COX-2, PGE2 synthesis is markedly reduced (Fig. 1E). The peak in
PGE2 levels coincides temporally with the expansion of MuSCs and
the well-documented accumulation of inflammatory cytokines such
as TGFβ1, CCL2, IL-10, IL-1β, and TNFα after injury, where
MuSC activation and expansion take place (3, 5, 7, 8). Although
PGE2 has previously been implicated in the inflammatory damage
response, the cellular and molecular mechanism by which it acts in
muscle regeneration has yet to be resolved.
To determine whether PGE2 has a direct effect on MuSC ex-

pansion, we assessed the proliferation potential of FACS isolated
MuSCs (24) treated with PGE2 (10 ng/mL) in culture. This con-
centration of PGE2 was selected based on a dose–response assay,
which resolved the lowest drug concentration that promotes a robust
MuSC proliferation response (Fig. S1B). We found that a 1-d ex-
posure to PGE2 in culture induced a sixfold increase in the number
of MuSCs relative to controls 1 wk later (Fig. 1F). This increase in
cell division after PGE2 treatment was also evident by EdU in-
corporation (Fig. S1 C and D). Culture of MuSCs in media with
charcoal-stripped serum, which is depleted of lipid components in-
cluding prostaglandins (25), markedly impeded cell proliferation.
Addition of PGE2 rescued this block in proliferation (Fig. S1E).
Notably, whereas freshly isolated MuSCs expressed relatively high
levels of EP4 receptor mRNA, expression progressively declined to
negligible levels as the cells gave rise to increasingly differentiated
muscle cells in culture. This result suggests that MuSCs are the
myogenic cell type most responsive to PGE2 (Fig. 1A). We further
analyzed the effect of PGE2 at the single cell level by tracking in-
dividual MuSCs by time-lapse microscopy analysis in a hydrogel
“microwell” platform as previously described (26, 27) (Fig. 1 G–K
and Fig. S1 F and G). Clonal assays can reveal differences that are
obscured by analysis of the population as a whole. Data were col-
lected over a 38-h time period and then analyzed using the Baxter
Algorithms for Cell Tracking and Lineage Reconstruction (26–28).
We observed a marked increase in cumulative cell divisions and cell
numbers in response to PGE2, spanning five generations for the
most robust clones (Fig. 1 G and H). The basis for the difference
between PGE2-treated cells and vehicle-treated controls is that im-
mediately following PGE2 addition after plating, entry into mitosis is
accelerated, which is the cause of the subsequent increased expan-
sion (Fig. 1 I and J and Fig. S1 F and G). The subsequent expo-
nential increase in cells in both conditions exacerbates the difference
at the onset, culminating in almost twice the number of total cells at
the end of the 38-h timespan (Fig. S1G). The concomitant increase
in the incidence of larger cell sizes observed after PGE2 treatment
(Fig. 1K) supports its role in mitotic events (29).

PGE2 Treatment Augments Muscle Regeneration. To determine if
PGE2 impacted the function of MuSCs in regeneration, we
performed in vivo experiments. To monitor the dynamics of re-
generation over time in a quantitative manner, we capitalized on
a sensitive and quantitative BLI assay we previously developed
for monitoring MuSC function after transplantation (24, 26, 27,
30). MuSCs were isolated from transgenic mice expressing both
GFP and luciferase (GFP/Luc mice), and equivalent numbers of

MuSCs (250 cells) were coinjected with either PGE2 or vehicle
into injured tibilais anteriors (TAs) of NOD-SCID gamma (NSG)
mice. PGE2 coinjection enhanced the regenerative capacity of
MuSCs by nearly two orders of magnitude compared with con-
trols assessed by BLI. Histological analysis reveals GFP+ MuSC
engraftment in the niche and GFP+ fibers resulting from fusion
over the time course (Fig. 2A and Fig. S2 A and B). Moreover,
following engraftment, a secondary injury elicited a spike in BLI
signals of PGE2-treated MuSCs relative to controls, suggesting
enhanced stem-cell repopulation (Fig. 2A). Notably PGE2 is
known to have a relatively short half-life in vivo (31). Thus, these
experiments demonstrate that transient exposure of MuSCs to
PGE2 at the time of codelivery to injured muscle suffices to
significantly enhance muscle regeneration.
We postulated that delivery of PGE2 alone could increase en-

dogenousMuSC numbers and enhance regeneration, circumventing
the need for a cell therapeutic. We reasoned that PGE2 delivered
during the early time window immediately after injury could aug-
ment the beneficial effects of the innate inflammatory response and
PGE2 surge. To test this possibility, muscles of young mice were
injured, and 2 d later, we injected a bolus of PGE2 (Fig. 2B). We
observed a striking increase (65 ± 7%) in endogenous PAX7-
expressing MuSCs in the classic satellite cell niche beneath the
basal lamina and atop myofibers 14 d after injury (Fig. 2 B and C).
A striking shift in the distribution of myofibers from smaller toward
larger sizes, assessed as cross-sectional area (CSA), was evident over
the time course of regeneration (Fig. 2 D and E and Fig. S2 C and
D). This change reflects the remodeling of myofiber architecture
that accompanies the observed accelerated regeneration, as muscle
mass did not increase during this time period (Fig. S2E). In addi-
tion, we tracked the response to injury and PGE2 of endogenous
MuSCs by luciferase expression using a transgenic mouse model,
Pax7CreERT2;Rosa26-LSL-Luc (Fig. 2 F and G). The BLI data were
in agreement with the histological data (Fig. 2 B and C). That a
single injection of PGE2 after injury could suffice to boost endog-
enous MuSC numbers and regenerative function leading to this
degree of accelerated regeneration was quite unexpected.

EP4 Receptor Mediates PGE2 Signaling to Promote MuSC Proliferation and
Engraftment. PGE2 is known to signal through four G protein-
coupled receptors (Ptger1–4; EP1-4) (6, 11), but the expression of
these receptors in MuSCs has not previously been reported. An
analysis of the transcript levels of the different receptors (Ptger1–4)
revealed that 24 h after PGE2 treatment, the most highly expressed
receptor in MuSCs is Ptger4 (Fig. 3A). PGE2-treated MuSCs showed
elevated downstream intracellular cAMP levels (Fig. 3B), a response
associated with EP4 signaling (11), and in the presence of an
EP4 antagonist, ONO-AE3-208, the increased proliferation response
induced by PGE2 was blunted (Fig. 3C). These data confirm that
PGE2 signals through the EP4 receptor to promote proliferation.
The specificity of PGE2 for EP4 was most clearly shown by the
marked reduction in proliferation of MuSCs lacking the receptor
following Cre-mediated conditional ablation of EP4 in MuSCs iso-
lated from EP4f/f mice (Fig. 3D and Fig. S3 A–D). A requirement for
EP4 in MuSC proliferation was confirmed by tamoxifen treatment of
MuSCs isolated from Pax7CreERT2:EP4f/f mice in which Cre-mediated
EP4 ablation is under the control of the MuSC-specific Pax7 pro-
moter (Fig. S3 E and F). Notably, compensation by other PGE2
receptors does not occur in MuSCs lacking EP4 as expression of
EP1, EP2, and EP3 receptors (Ptger1–3) remains low in MuSCs (Fig.
S3G). Together, these data show that PGE2 and its receptor EP4 are
crucial for MuSC proliferation. To determine if EP4 plays a role in
MuSC function in vivo, we transplanted luciferase-expressing MuSCs
that lacked the EP4 receptor following conditional ablation in culture
into injured TAs of NSG mice. The BLI signal that was initially
detected progressively declined to levels below the threshold of sig-
nificance (Fig. 3E and Fig. S3 A–D). Thus, in the absence of PGE2
signaling via the EP4 receptor, regeneration is impaired.
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Transcription Factor Nurr1 Is a Downstream Mediator of PGE2/EP4
Signaling in MuSCs. To perform an unbiased search for mediators of
signaling downstream of PGE2 that mediate the enhanced effect of
MuSC functions, we performed an RNA-sequencing (RNA-seq)
analysis comparing isolated MuSCs treated with vehicle (control) or
PGE2 for 24 h (Fig. S4A). Bioinformatics analyses using Ingenuity
Pathway Analysis (IPA) and Metacore software packages revealed
that in addition to regulators of PGE2 metabolism, PGE2 treatment
of MuSCs led to an increase in molecular and cellular functions
consistent with stem-cell expansion, including cAMP signaling, and
cell-cycle regulation (Fig. S4 B and C). Among the top 200 differen-
tially expressed genes with a nonadjusted P value < 0.05, only 11
transcription factors were identified (Fig. 4A). Nurr1 was among
the few that were differentially expressed. Nurr1 had also previously
been shown to mediate PGE2 signaling through cAMP and phospho-
CREB to induce cell proliferation in colorectal cancer and neuronal
cells (32, 33). To investigate its putative role as a downstream effector
of EP4 signaling in MuSCs, we examined its expression in vivo.

Remarkably, the time window of Nurr1 expression mirrored that of
PGE2 in muscle tissue, peaking at day 3 after injury (Figs. 1B and
4B). In culture, PGE2 treatment increased Nurr1mRNA and protein
expression (Fig. 4 C andD), andNurr1 knockdown blunted the effect
of PGE2 in inducing MuSC proliferation (Fig. 4E and Fig. S4D). To
determine the specificity ofNurr1 transcriptional regulation to PGE2-
mediated EP4 receptor signaling, we ablated the EP4 receptor in
Pax7CreERT2:EP4f/f MuSCs by tamoxifen treatment (Fig. S4E). Nurr1
was not up-regulated after PGE2 treatment in EP4 knockout MuSCs
(Fig. 4F). Expression of Nurr1 was highest in MuSCs and declined at
the onset of differentiation of myogenic cells, in accordance with the
expression pattern of EP4 (Fig. 4G). Together, these data implicate
the transcription factor NURR1 as a mediator of PGE2/EP4 sig-
naling that triggers MuSC expansion.

Loss of PGE2 Signaling Impairs Muscle Regeneration and Strength. To
determine if EP4 is required for regeneration in vivo, we used the
Pax7CreERT2:EP4f/f mouse model in which EP4 is specifically and
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conditionally ablated in MuSCs by sequential i.p. tamoxifen in-
jection into mice (Fig. 5A). Induction of EP4 ablation was highly
efficient in Pax7+ cells in vivo following tamoxifen treatment and
injury. Ptger4 mRNA levels detected in sorted MuSCs were 96%
lower than in the control (Fig. 5 A and B). In the absence of
EP4 signaling in MuSCs, we observed an aberrant persistence of
immature centrally nucleated regenerating myofibers that express
embryonic myosin heavy chain (eMyHC) at day 7 after injury (Fig.
5 C and E). This evidence of impaired regeneration was corrob-
orated by a shift toward myofibers with diminished myofiber CSA
relative to controls at day 21 after injury (Fig. 5 D and E). In these
experiments, PGE2 can act on other cell types in muscle tissue in
the course of regeneration, such as mature myofibers, FAPs, and
immune cells; however, these cells were not sufficient to restore
the EP4-deficient MuSC functions. These features provide strong
evidence that in the absence of EP4 signaling, efficacious muscle
regeneration is impeded.
We further tested whether the defects in muscle repair stem-

ming from specific loss of EP4 in MuSCs impacted muscle
strength. Strikingly, eliminating signaling through EP4 on MuSCs
alone led to a 35 ± 6% and 31 ± 4% decrease in twitch and tetanus
force, respectively (Fig. 5 F–H), without apparent loss of muscle
mass (Fig. S5A). To determine if the absence of PGE2 altered
muscle regeneration and strength after injury, we subjected mice to
treatment with a NSAID (indomethacin). A single indomethacin
injection into tibialis anterior (TA) muscles of a Pax7CreERT2;
Rosa26-LSL-Luc mouse model 3 d after injury led to a decline in
BLI relative to controls, indicative of an impairment in MuSC
expansion and regeneration (Fig. 5 I and J). This loss of re-
generative capacity after NSAID treatment was accompanied by
a substantial 33 ± 7% reduction in twitch force compared with
controls (Fig. 5 K and L and Fig. S5B). The diminished strength
seen upon global muscle inhibition of PGE2 synthesis mirrored
that observed in regenerating muscle with MuSC-EP4–specific

knockout, suggesting that MuSC expansion accounts for the
majority of the PGE2-mediated effects on muscle regeneration.

Discussion
We have discovered that a major effect of PGE2 is to induce
muscle stem-cell expansion during muscle regeneration. PGE2 has
been implicated as an immunomodulator that acts on neutrophils,
mast cells, and macrophages that are crucial to the early in-
flammatory response after injury. The ensuing cytokine storm is
thought to induce MuSC function in regeneration (3, 6, 7, 11).
Studies in whole-body COX-2 KOmice, in which all prostaglandin
synthesis was ablated, supported this conclusion (15, 19). Myo-
blasts have been proposed as the cell type responsive to PGE2 in
culture (14, 16–18, 34, 35), but these cells perform poorly in re-
generation (24) and cannot account for the observed effects.
Moreover, other studies implicating PGE2 in regeneration all
suffered from pleiotropic effects on a multiplicity of cell types.
MuSCs are crucial to development and regeneration (1–3, 24, 36–

38), and their numbers dramatically increase in response to insults
that damage the muscles in mice and humans (5, 20, 39–42). In-
jections of MuSCs into injured muscles lead to their exponential
increase, whereas injection of their myoblast derivatives results in a
decline in numbers, revealing a remarkable distinction in re-
generative capacity of these two cell types (24). Here we show that
the major effect of PGE2 during muscle regeneration is on MuSCs
and that this effect is direct and mediated by the EP4 receptor.
Notably, EP4 is robustly expressed on MuSCs and progressively di-
minishes to negligible levels on differentiating myoblasts, suggesting
that the most responsive myogenic cell type to PGE2 is the MuSC.
Mechanistically, once PGE2 engages the EP4 receptor, it activates
cAMP and the downstream proliferation-inducing transcription
factor Nurr1, leading to accelerated MuSC proliferation (Fig. 6).
Although Nurr1 has been associated in intestinal epithelial cells with
induction of proliferation and regeneration by directly blocking the

C

D

A

E

B

Fig. 3. EP4 mediates PGE2 signaling in MuSCs. (A) Expression of prostaglandin receptors (Ptger 1–4) by MuSCs after 24-h treatment with vehicle or PGE2 (n = 3
mice with two technical replicates). (B) cAMP levels in MuSCs after 1-h PGE2 treatment (n = 6 mice with three technical replicates assayed in 2 independent
experiments). (C) MuSC numbers after 24-h treatment with vehicle or PGE2 in the absence or presence of EP4 antagonist (ONO-AE3-208, 1 μM). (D) Pro-
liferation of EP4-null MuSCs treated with vehicle or PGE2. EP4f/f MuSCs were treated with lentiviral vector encoding Cre (+Cre, EP4-null) or without (–Cre;
control) to delete EP4 alelles. (Top) Scheme depicting EP4-null and control MuSC analysis. (Bottom) EP4-null and control MuSC numbers (n = 6 mice in
two independent experiments). (E) Engraftment of GFP/luc-labeled EP4f/f MuSCs (1,000 cells) treated with Cre (+Cre) or without (–Cre; empty vector) in culture
to delete EP4 alelles. EP4f/f MuSCs were transduced with a lentiviral vector encoding GFP/luciferase for BLI. (Top) Transplant scheme. (Bottom Left) BLI signals
after transplant (n = 5 mice per condition). (Bottom Right) Representative BLI image. (Scale bar, 5 mm.) *P < 0.05, **P < 0.001, ****P < 0.0001. (A and B)
Mann–Whitney test; (C and D) ANOVA test with Bonferroni correction for multiple comparisons; (E) ANOVA test for group comparisons and significant
difference for endpoint by Fisher’s test. Means + SEM. n.s., nonsignificant.
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cell cycle inhibitor p21 (Waf1/Cip1) in intestinal epithelial cells (43),
its role in the expansion of stem cells, and particularly MuSCs, has
not previously been described. The finding that further substantiates
that Nurr1 mediates the onset of MuSC proliferation in vivo is that
its levels transiently peak in muscle tissues 3 d after injury, con-
comitant with the observed surge in PGE2.
We show that MuSC function and engraftment are strictly de-

pendent on PGE2 signaling through its receptor by its conditional
and specific ablation of EP4 using two approaches. Ablation of
EP4 on MuSCs in vitro followed by transplantation in vivo leads to
diminished engraftment evident by BLI. The most striking evi-
dence of a crucial role for EP4 derives from its in vivo ablation of
EP4 specifically on endogenous MuSCs, which causes a marked
reduction in muscle strength after injury accompanied by a shift
toward smaller and more immature myofibers relative to controls
(Fig. 6). Thus, in the absence of the EP4 receptor, regeneration by
both transplanted and endogenous MuSCs is severely impaired.
The surge in PGE2 after injury is transient. Similarly, acute

PGE2 treatment enhances and accelerates muscle regeneration
long-term. When freshly isolated MuSCs were coinjected with
PGE2 into injured muscles, a boost in muscle repair was evident
by BLI. A single ex vivo exposure of hematopoietic stem cells to
PGE2 had a similarly pronounced effect on subsequent stem cell
expansion and reconstitution of the blood after transplant (44).
Indeed, a single injection of PGE2 alone (without MuSCs) directly
into injured muscles led to a striking increase in endogenous MuSC
numbers and myofiber sizes that was apparent within 2 wk. The
beneficial effects of delivery of the inhibitor of the PGE2-degrading
enzyme (15-PGDH) SW033291 on hematopoietic, liver, and colon
regeneration are likely due to a similar augmentation of endoge-
nous PGE2 levels (45). Notably, PGE2 and its analogs have safely
been used in patients for more than a decade, for instance to induce
labor (46) and to promote hematopoietic stem-cell transplantation
(44). Together with our findings, these studies pave the way for its
clinical use in boosting muscle repair after injury.
We show that PGE2 levels act as a rheostat that controls

the efficacy of regeneration. Augmentation of the inflammatory
PGE2 response to injury leads to accelerated MuSC expansion and

muscle regeneration. By contrast, NSAID administration at the
time of injury to control pain, a common practice, abrogates that
effect, suggesting that PGE2 signaling during this early temporal
window is crucial to its beneficial effects. Most striking is our
finding that a single PGE2 treatment suffices to rapidly and ro-
bustly invoke a MuSC response to enhance regeneration of dam-
aged muscle and restore strength.

Materials and Methods
Mice. We performed all experiments and protocols in compliance with the
institutional guidelines of Stanford University Institutional review board (IRB)
and Administrative Panel on Laboratory Animal Care (APLAC). We obtained
young wild-type C57BL/6 mice from Jackson Laboratory. Double-transgenic
GFP/luc mice were obtained as described previously (Jackson Laboratory,
Stock 008450) (24). NSG were obtained from Jackson Laboratory (Stock
0055570). EP4flox/flox (EP4f/f) mice were a kind gift from K. Andreasson, De-
partment of Neurology & Neurological Sciences, Stanford University School of
Medicine, Stanford, CA (Jackson Laboratories, Stock 028102) (47). Double-
transgenic Pax7CreERT2;EP4f/f were generated by crossing Pax7CreERT2 mice
obtained from Jackson Laboratory (Stock 017763) (48) and EP4f/f mice. Double-
transgenic Pax7CreERT2;Rosa26-LSL-Luc were generated by crossing Pax7CreERT2

mice and Rosa26-LSL-Luc obtained from Jackson Laboratory (Stock 005125)
(49). We validated these genotypes by appropriate PCR-based strategies. All
mice from transgenic and wild-type strains were of young age (2–4 mo). All
experiments were conducted using age- and gender-matched controls and
littermates randomly assigned to experimental groups.

For muscle injury, notexin (10 μg·mL−1; Latoxan, catalog no. L8104) or car-
diotoxin (10 μM; Latoxan, catalog no. L8102) injection or crioinjury was per-
formed into the TA muscle. Details are provided in SI Materials and Methods.

FACS for Mouse MuSCs. We isolated and enriched MuSCs as previously de-
scribed (24, 26, 27). Details are provided in SI Materials and Methods.

Flow Cytometric Analysis. We analyzed NURR1 levels by flow cytometry using
myogenic progenitors after a 24-h treatment of vehicle (DMSO) or PGE2
(10 ng/mL) or fromMuSCs transfectedwith shSCR or shNurr1 (see Knockdown
Assays). We collected cells by incubation with 0.5% trypsin in PBS for 2 min
at 37 °C. We fixed the cells using 1.6% paraformaldehyde in PBS and then
permeabilized them in ice-cold methanol. We then blocked them in staining
buffer (0.5% BSA in PBS) for 30 min at room temperature and stained them
with a mouse monoclonal anti-Nurr1 (Abcam, catalog no. ab41917, 1:75)
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0.0005, ****P < 0.0001. Mann–Whitney test (B, C, H, and L); ANOVA test for group comparison and significant difference for each bin by Fisher’s test (D);
ANOVA test for group comparisons and significant difference for endpoint by Fisher’s test (J). Means + SEM.
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primary antibody or anti-mouse IgG control (Jackson ImmunoResearch Labo-
ratories). Then, we stained cells with Pacific Blue-conjugated goat anti-mouse
secondary antibody (Thermo Fisher Scientific, catalog no. P-10994, 1:500). We
analyzed the cells on a FACS LSR II cytometer using FACSDiva software (BD
Biosciences) in the Stanford Shared FACS Facility, purchased using NIH S10
Shared Instrument Grant S10RR027431-01.

MuSC Transplantation. We transplanted 250 freshly isolated MuSCs (Fig. 2A) or
1,000 cultured MuSCs (Fig. 3E) into the TA muscles of recipient mice as pre-
viously described (24, 26, 27). Details are provided in SI Materials and Methods.

BLI. We performed BLI using a Xenogen-100 system, as previously described
(24, 26, 27, 30). Details are provided in SI Materials and Methods.

Hydrogel Fabrication.We fabricated polyethylene glycol (PEG) hydrogels from
PEG precursors, synthesized as described previously (27). Details are provided
in SI Materials and Methods.

MuSC Culture, Treatment, and Lentiviral Infection. Following isolation, we
resuspended MuSCs in myogenic cell culture medium containing DMEM/F10
(50:50), 20% FBS, 2.5 ng·mL−1 fibroblast growth factor-2 (FGF-2 also known
as bFGF) and 1% penicillin–streptomycin. We seeded MuSC suspensions at a
density of 500 cells per cm2 surface area. We maintained cell cultures at 37 °C
in 5% CO2 and changed medium every other day. For PGE2, EP4 receptor
antagonist treatment studies, we added 1–200 ng/mL Prostaglandin E2
(Cayman Chemical) (unless specified in the figure legends, 10 ng/mL was the
standard concentration used), and/or 1 μM EP4 antagonist (ONO-AE3-208,
Cayman Chemical) to the MuSCs cultured on collagen-coated dishes for the
first 24 h. The cells were then trypsinized and cells reseeded onto hydrogels
for an additional 6 d of culture. All treatments were compared with their
solvent (DMSO) vehicle control. For stripped serum assays, we resuspended
isolated MuSCs in stripped serum medium containing DMEM/F10 (50:50),
20% charcoal stripped FBS (Gibco, cat no. 12676011), 2.5 ng·mL−1 bFGF, and
1% penicillin–streptomycin. For these experiments, MuSCs were cultured on
hydrogels and vehicle (DMSO), or 10 ng/mL PGE2 (Cayman Chemical) was
added to the cultures with every media change (every 2 d). Proliferation
(see below) was assayed 7 d later. We performed all MuSC culture assays and
transplantations after 1 wk of culture unless noted otherwise.

For EP4f/f MuSCs studies, we isolated MuSCs as described above (FACS for
Mouse MuSCs) and infected all cells with lentivirus encoding EF1α-luc-IRES-GFP
(GFP/luc virus) for 24 h in culture as described previously (26), and a subset of
them was coinfected with a lentivirus encoding pLM-CMV-R-Cre (mCherry/Cre
virus) for 24 h in culture. pLM-CMV-R-Cre was a gift from Michel Sadelain,
Memorial Sloan-Kettering Cancer Center, New York (Addgene plasmid 27546)
(50). We transplanted EP4f/f MuSCs (1,000 cells) into young (2–4 mo) 18-gy

irradiated TAs of NSG recipient mice. For in vitro proliferation assays, EP4f/f

MuSCs were plated on hydrogels after infection and treated for 24 h with
vehicle (DMSO) or 10 ng/mL PGE2, and proliferation was assayed 3 d later. Cells
were assayed for GFP and/or mCherry expression 48 h after infection using an
inverted fluorescence microscope (Carl Zeiss Microimaging). Additionally, we
also performed experiments with MuSCs isolated from Pax7CreERT2;EP4flox/flox or
control Pax7+/+;EP4flox/+ littermates. MuSCs were plated on collagen-coated
plates and treated with 1 μM 4-hydroxy tamoxifen or vehicle (95% ethanol)
during 48 h and then either passed onto hydrogels to assess proliferation 7 d
later or treated with PGE2 or vehicle and collected for analysis. MuSCs are
freshly isolated from the mice by FACS and put in culture for a maximum time
period of 1 wk; therefore, mycoplasma contamination is not assessed.

Clonal MuSC Proliferation and Fate Analyses. We assayed clonal MuSC pro-
liferation by time-lapse microscopy as previously described (26, 27). Details
are provided in SI Materials and Methods.

Proliferation Assays. To assay proliferation, we used three different assays
(hemocytometer, VisionBlue, and EdU). Details are provided in SI Materials
and Methods.

Knockdown Assays. For Nurr1 silencing in MuSCs, lentiviruses containing
pLKO.1-scramble shRNA (shSCR) and pLKO.1-Nurr1 shRNA (Mission shRNA,
TRCN0000026029, Sigma) were produced in 293T cells using the packaging
plasmids pLP1, pLP2, and pLP/VSVG (Invitrogen) by cotransfecting all
plasmids using FuGENE-6 (Promega) according to the manufacturer’s
protocol. Cells were plated the day before infection, and supernatants
were collected every 12 h for 2 d from 293T cells. Freshly sorted MuSCs
were seeded on collagen-coated plates for 24 h and were then infected
with the lentiviruses. Forty-eight hours after, cells were passed onto
hydrogels and treated with PGE2 or vehicle (DMSO) for 24 h. Proliferation
was assayed 7 d later.

Quantitative RT-PCR.We isolated RNA fromMuSCs using the RNeasy Micro Kit
(Qiagen). For muscle samples, we snap-froze the tissue in liquid nitrogen,
homogenized the tissues using a mortar and pestle, followed by syringe and
needle trituration, and then isolated RNA using TRIzol (Invitrogen). We
reverse-transcribed cDNA from total mRNA from each sample using the
SensiFAST cDNA Synthesis Kit (Bioline). We subjected cDNA to RT-PCR using
SYBR Green PCR Master Mix (Applied Biosystems) or TaqMan Assays (Applied
Biosystems) in an ABI 7900HT Real-Time PCR System (Applied Biosystems). We
amplified samples at 95 °C for 10 min and then 40 cycles at 95 °C for 15 s and
60 °C for 1 min. To quantify relative transcript levels, we used 2−ΔΔCt to
compare treated and untreated samples and expressed the results relative to
Gapdh. For SYBR Green qRT-PCR, we used the following primer sequences:

O

COOH

Le
v

e
l i

n
 n

ic
h

e

PGE2

Muscle regeneration

Normal regeneration

(FORCE RESTORED) 

Impaired regeneration

(FORCE REDUCED) 

Augmented

MuSC function

(BLI    )

Aberrant

MuSC function

(BLI    )

Skeletal muscle

Injury-induced inflammation

M

Damaged

ofibersmy be

PGE2 signaling

nio

d PGE2

cAMP
Nurr1

EP4

PGE2

NSAID 

EP4 ablation

MuSC

MuSC

Loss of PGE signalin
g

Fig. 6. Model for PGE2 signaling to expand MuSC function in regeneration. Schematic of the role of PGE2 in MuSCs. After injury, PGE2 released into the
muscle niche acts on the EP4 receptor, which signals through cAMP/phospho-CREB leading to the expression of Nurr1 proliferation-inducing transcription
factor. This promotes MuSC expansion for efficient muscle regeneration. Loss of PGE2/EP4 signaling by NSAID treatment or specific loss of EP4 receptor leads
to aberrant MuSC function and impaired muscle regeneration and strength recovery.

6682 | www.pnas.org/cgi/doi/10.1073/pnas.1705420114 Ho et al.

D
ow

nl
oa

de
d 

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n 
O

ct
ob

er
 3

1,
 2

01
9 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705420114/-/DCSupplemental/pnas.201705420SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1705420114


Gapdh, forward 5′-TTCACCACCATGGAGAAGGC-3′, reverse 5′-CCCTTTTG-
GCTCCACCCT-3′; Ptges, forward 5′-GCTGTCATCACAGGCCAGA-3′, reverse
5′-CTCCACATCTGGGTCACTCC-3′; Ptges2, forward 5′-CTCCTACAGGAAAGT-
GCCCA-3′, reverse 5′-ACCAGGTAGGTCTTGAGGGC-3′; Ptger1, forward 5′-GT-
GGTGTCGTGCATCTGCT-3′, reverse 5′ CCGCTGCAGGGAGTTAGAGT-3′; and
Ptger2, forward 5′-ACCTTCGCCATATGCTCCTT-3′, reverse 5′-GGACCGGTGG-
CCTAAGTATG-3′. TaqMan Assays (Applied Biosystems) were used to quantify
Pax7, Myogenin, Nurr1, Ptger3, and Ptger4 in samples according to the man-
ufacturer instructions with the TaqMan Universal PCR Master Mix reagent kit
(Applied Biosystems). Transcript levels were expressed relative to Gapdh levels.
For SYBR Green qPCR, Gapdh qPCR was used to normalize input cDNA
samples. For Taqman qPCR, multiplex qPCR enabled target signals (FAM)
to be normalized individually by their internal Gapdh signals (VIC).

PGE2 ELISA. PGE2 levels were measured using a PGE2 ELISA Kit (R&D Systems,
catalog no. KGE004B). Details are provided in SI Materials and Methods.

cAMP Activity Assay.MuSCswere treatedwithDMSO (vehicle) or PGE2 (10 ng/mL)
for 1 h and cAMP levels measured according to the cAMP-Glo Assay protocol
optimized by the manufacturer (Promega). Each sample was assayed in
triplicate and in two independent experiments.

In Vivo Muscle Force Measurement. Mice were injured as described in Muscle
Injury. Force measurements were on the TA muscles at day 14 after injury
based on protocols published previously (26, 51). Details are provided in SI
Materials and Methods.

RNA-Seq. For RNA-seq, α7-integrin+CD34+ MuSCs were isolated as described
above, seeded on collagen-coated plates, treated a day later with PGE2 or
vehicle (DMSO), and processed after 24 h of treatment. RNA was isolated
using Qiagen RNAEasy Micro kit from 5,000–10,000 cells and cDNA gener-
ated and amplified using NuGEN Ovation RNA-Seq System v2 kit. Libraries
were constructed from cDNA with the TruSEQ RNA Library Preparation Kit
v2 (Illumina) and sequenced to 30–40 × 106 1 × 75-bp reads per sample on a
HiSEQ 2500 from the Stanford Functional Genomics Facility, purchased using
NIH S10 Shared Instrument Grant S10OD018220.

RNA-Seq Analysis. For the RNA-Seq analysis, RNA sequences were aligned
against the Mus musculus genome using STAR (52). RSEM (53) was used for
calling transcripts and calculating transcripts per million (TPM) values as well
as total counts. A counts matrix containing the number of counts for each
gene and each sample was obtained. This matrix was analyzed by DESeq to
calculate statistical analysis of significance (54) of genes between samples.

Immunofluorescence and Histology. We collected and prepared recipient TA
muscle tissues for histology as previously described (26, 27). For mouse injury
assays, we incubated transverse sections with Rabbit polyclonal anti-PGE2
(abcam, catalog no. ab2318, 1:100), rat polyclonal anti-Laminin (Clone A5)

(EMD Millipore, catalog no. 05–206, 1:200), mouse monoclonal anti-Pax7
(Santa Cruz, catalog no. sc-81648, 1:50), AlexaFluor 647-conjugated wheat
germ agglutinin (WGA) antibody (W32466, Thermo Fisher Scientific), rabbit
polyclonal anti-GFP (A11122, Thermo Fisher Scientific, 1:500), and mouse
monoclonal anti-eMyHC (DSHB, catalog no. F1.652, 1:10) primary antibodies
and then with AlexaFluor secondary antibodies (Jackson ImmunoResearch
Laboratories, 1:500). We counterstained nuclei with DAPI (Invitrogen).

Image Analysis. We acquired images with an AxioPlan2 epifluorescent mi-
croscope (Carl Zeiss Microimaging) with Plan NeoFluar 10×/0.30 N.A. or
20×/0.75 N.A. objectives (Carl Zeiss) and an ORCA-ER digital camera (Hama-
matsu Photonics) controlled by the SlideBook (3i) software or with a KEYENCE
BZ-X700 all-in-one fluorescence microscope (Keyence) with 20×/0.75 N.A. ob-
jectives. The images were cropped using Adobe Photoshop with consistent
contrast adjustments across all images from the same experiment. The image
composites were generated using Adobe Illustrator. We analyzed the number
of PAX7-positive cells using the MetaMorph Image Analysis software (Molec-
ular Devices) and the fiber area using the Baxter Algorithms for Myofiber
Analysis that identified the fibers and segmented the fibers in the image to
analyze the area of each fiber. For PAX7 quantification, we examined serial
sections spanning a depth of at least 2 mm of the TA. For fiber area, the entire
cross-section of the TA with the largest injured area was captured and stitched
using the Keyence Analysis Software. Data capture and analyses were blinded.
The researchers performing the imaging acquisition and scoring were unaware
of treatment condition given to the sample groups analyzed.

Statistical Analysis. We performed cell culture experiments in at least three in-
dependent experiments where three biological replicates were pooled in each. In
general, we performed MuSC transplant experiments in at least two independent
experiments, with at least 3–5 total transplants per condition. We used a paired
t test for experiments where control samples were from the same experiment
in vitro or from contralateral limbmuscles in vivo. A nonparametricMann–Whitney
test was used to determine the significance difference between vehicle-treated vs.
PGE2-treated groups using α = 0.05. ANOVA or multiple t test was performed for
multiple comparisons with significance level determined using Bonferroni correc-
tion or Fisher’s test as indicated in the figure legends. Unless otherwise described,
data are shown as the mean ± SEM. Differences with P value < 0.05 were con-
sidered significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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