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Data science has transformed fields such as computer vision and economics. The ability of modern data
science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning
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to provide a powerful complement to the traditional approaches of experimental motion capture and
biomechanical modeling. The purpose of this article is to provide a perspective on how data science
methods can be incorporated into our field to advance our understanding of gait biomechanics and
improve treatment planning procedures. We provide examples of how data science approaches have
been applied to biomechanical data. We then discuss the challenges that remain for effectively using data
science approaches in clinical gait analysis and gait biomechanics research, including the need for new
tools, better infrastructure and incentives for sharing data, and education across the disciplines of bio-
mechanics and data science. By addressing these challenges, we can revolutionize treatment planning
and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over
the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories
around the world.

& 2016 Elsevier Ltd. All rights reserved.
Biomechanical gait analysis is commonly used to analyse sport
performance and evaluate pathologic gait. Significant advances in
motion capture equipment, research methodologies, and data
analysis techniques have enabled a host of studies that have
advanced our understanding of the biomechanics of walking and
running. Despite these advances, one can argue that the funda-
mental approach to clinical gait analysis, and gait biomechanics
research, has not evolved at the same speed. Clinical gait analysis
laboratories continue to operate separately from one another, and
analyze each patient in isolation, lacking the tools or time to sta-
tistically compare a new patient to the thousands of patients seen
in the same lab over the years. Moreover, the vast majority of gait
biomechanics research investigates the factors associated with
injury, pathology, and performance by focusing on a small number
of variables and experiments performed on a few subjects. The
purpose of this article is to share the lessons we have learned
about these challenges and promise of using modern data science
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methods (e.g., machine learning) to analyse the growing amounts
of gait biomechanics data collected by researchers and clinicians.

In recent years, sophisticated data science methods have been
adopted across disciplines including robotics, genetics, and eco-
nomics, and increasingly, in biomechanics as well. Data science
draws from mathematics, computer science, statistics, and signal
processing to develop methods for gaining insight from hetero-
geneous, noisy, sparse, or otherwise complex data. These methods
can process large quantities of data, without exclusively relying on
a priori knowledge of predictive variables. For example, Facebook
uses network analysis and graph mining to locate your friends
from high school, and Google uses convolutional neural networks
to achieve state-of-the-art performance in speech and image
recognition. In the realm of biomechanics, researchers have char-
acterized normal and pathological gait kinematics and kinetics
using data science methods such as principal component analysis
(PCA) and support vector machines (SVM) (Deluzio et al., 1997;
Eskofier et al., 2013; Federolf et al., 2013). As another example,
Mansi and colleagues (2012) used a machine learning approach to
build finite-element models from medical imaging data to study
the biomechanical impact of mitral valve repair.
ra of data science. Journal of Biomechanics (2016), http://dx.doi.
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Applying data science methods with careful attention to vali-
dation and knowledge of biomechanics research is providing new
insights about how to design effective gait biomechanics studies
and how to treat gait pathology. One example comes from a paper
recently published in this Journal by the Calgary group (Ferber,
Osis), which analysed running patterns. Many biomechanical
investigations examine groups based on injury criteria (e.g.,
patellofemoral pain), demographic factors (e.g., age, height, sex),
or gait speed, under the assumption that movement patterns will
be homogeneous within these groups. By contrast, we used a data
science approach to identify two distinct kinematic running gait
patterns within a single group of healthy runners (Phinyomark
et al., 2015). The dataset was collected over a period of two years
as part of an initiative to build a database of running and walking
biomechanics. We identified two kinematic running gait patterns
using a hierarchical cluster analysis without a priori knowledge of
how many groups would be identified or what variables would
best separate the groups. The results revealed that selection of a
small number of subjects without accounting for subjects’ running
type can result in a biased outcome when making clinical com-
parisons in gait kinematics (e.g., if the treatment arm, by random
chance, includes a greater number of group 1 runners than the
control arm of a study). Caution is therefore advised when
assuming that running gait patterns within a sample will be
representative of a population - a data science approach was able
to reveal this insight.

Additional examples come from the Stanford group (Delp,
Hicks) who, together with collaborators at Gillette Children's
Specialty Healthcare, combined biomechanical modeling and data
science methods to better understand the causes and improve
treatment of gait abnormalities in individuals with cerebral palsy.
Musculoskeletal simulation has demonstrated that muscle activity
in the period leading up to the swing phase of gait restricts normal
knee motion (Goldberg et al., 2003, 2004; Reinbolt et al., 2008). By
integrating this biomechanical knowledge into a statistical model
they were able to predict, from gait analysis and other clinical
data, which patients would benefit from rectus femoris muscle
transfer surgery with 88% accuracy (Reinbolt et al., 2009). Simi-
larly, biomechanical modeling has shown that correcting short or
slow hamstrings with hamstring-lengthening surgery can lead to
improved knee flexion in stance (i.e., crouch gait: Arnold et al.,
2006a, 2006b). This information helped develop a statistical model
that was able to predict improvement in crouch gait with 73%
accuracy, while in practice only 48% of patients improve after
surgery (Hicks et al., 2011). This approach demonstrates that
integrating data science methods with experimental and compu-
tational biomechanical data can yield robust predictions to
improve clinical practice.

Two important challenges must be met to advance the use of
data science approaches in biomechanical studies. First, in gait
research, data are often collected at different time points on scales
from seconds to years. These time points might correspond to a
real-time activity like the three-dimensional acceleration of a
sensor on the wrist during running, or a clinical measurement like
muscle strength taken at six, eight and ten months post-injury, at
36 years of age, or simply as a function of calendar time. In fact,
data like these abound in biomechanical studies, particularly when
combining different sources of data. To address this challenge, and
to build accurate classification and prediction models for gait
research, new tools are needed.

Statistical and machine learning tools are being developed to
make predictions and identify trends, correlations, and clusters in
large-scale, sparse, and irregular time-varying measurements. For
example, functional data analysis (e.g., Ramsay, 2006; James et al.,
2000; James and Hastie, 2001), is a statistical tool that accounts for
the fact that discrete time point data are generated from an
Please cite this article as: Ferber, R., et al., Gait biomechanics in the e
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underlying, time-varying function. The predictive features (e.g., to
identify injury risk) parameterize the time-varying curve(s) and
are chosen automatically from the data based on the ability to
discriminate between subjects or predict the outcome of interest.
These time-series data can be collected at different sampling
points for different subjects and the selected features typically
encode more information than the minima, maxima, or other
discrete features chosen subjectively by the researcher building
the model.

Mixed effects models are another powerful tool for analysing
longitudinal data that can separate the fixed effects of interest
(e.g., the effect of an injury or pathology on the deterioration of
gait over time) from random effects (e.g., the effect of fatigue on a
given measurement day). Researchers are also developing
advanced machine learning systems that use layers of neural
networks or graphical models to automatically learn a set of fea-
tures or a hierarchical structure to make predictions (Sen et al.,
2015; De Sa et al., 2016; Lasko et al., 2013; Razavian and Sontag,
2015).

A second challenge faced by the biomechanics research com-
munity is over-fitting of data. Over-fitting artificially inflates the
accuracy of a model or significance of a predictive variable and can
arise from assessing a model's accuracy on the same data used to
train a model or select predictive features. The risk of overfitting is
larger if the ratio of the number of subjects to the number of
variables is low. Over-fitting reduces the generalisability of results
and, even more troubling, may promote errors in the selection of
which statistical models best characterize clinical populations. To
avoid overfitting, one must employ techniques such as cross-
validation (Stone, 1974), which can help give estimates of the
ability of a model to make predictions for a new set of subjects.
Moreover, overfitting can be avoided by testing with larger and
independent datasets.

Thus, more data that comes from a variety of labs and clinics is
needed. To apply data science methods, an adequate number of
samples must be obtained, and the number grows with the
number of variables used in the analysis. While data about
movement abounds in biomechanics labs and clinics around the
world, the majority of these data are siloed. One approach the
Calgary group has taken to overcome this problem is to create a
worldwide infrastructure of clinical and research partners linked
through an automated 3-dimensional biomechanical gait data
collection system. This system continually aggregates data, with-
out relying on a priori knowledge to direct data collection modes
and analyses. This approach has resulted in the accumulation of
walking and running data from over 4000 individuals, and work
has just begun to unlock the potential of applying data science
methods to help answer clinical and biomechanical questions.
Researchers have begun to share their data publicly on Simtk.org
and other platforms such as ODHSI.org and CrowdSignals.io. Data
sharing is a necessary step to enable new and more comprehen-
sive biomechanical studies to be performed.

Data science will be most successful in the field of gait bio-
mechanics if education and method development occurs as a close
collaboration between the two disciplines. The National Institutes
of Health (NIH) is supporting this cross-fertilization through its Big
Data to Knowledge Initiative (BD2K). For example, the Mobilize
Center is a NIH BD2K Center that is developing and applying data
science methods in collaboration with gait researchers, with the
mission of sharing these resources with the biomechanics com-
munity (Ku et al., 2015). The Center is creating new methods for
applications in movement biomechanics, including osteoarthritis,
cerebral palsy, and running-related injuries, motivated by the
unique challenges of analyzing complex movement data. For
example, Chris Re and colleagues are pioneering machine learning
systems to efficiently and transparently encode expert knowledge
ra of data science. Journal of Biomechanics (2016), http://dx.doi.
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from biomedical researchers when processing and analyzing large,
heterogeneous, and noisy data typical of biomechanics (Sen et al.,
2015; De Sa et al., 2016). By developing these new approaches,
sharing data and validated software tools, and training thousands
of researchers, the Mobilize Center collaborates with laboratories
around the world, like the Calgary group and other researchers
with biomechanical databases seeking to transform human
movement research.

In summary, as data science continues to develop, and tech-
nology provides the opportunity for gait laboratories to combine
and share data, the field of clinical gait analysis will advance. In the
near future we will begin to analyze large quantities of data,
explore unstructured or complex data, ask open-ended questions
based on these data, and develop predictive models that produce
new insights. We encourage the biomechanics research commu-
nity to openly share data between laboratories, learn more about
how to employ data science methods, develop data research net-
works, and join our collective efforts to advance the field of gait
biomechanics research.
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