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Highlights
This prospective study is one of the largest clinical trials in essential tremor to date. Study findings suggest 
that individualized non-invasive neuromodulation therapy used repeatedly at home over three months results 
in safe and effective hand tremor reduction and improves quality of life for many essential tremor patients.
Background: Two previous randomized, controlled, single-session trials demonstrated efficacy of non-invasive 
neuromodulation therapy targeting the median and radial nerves for reducing hand tremor. This current study 
evaluated efficacy and safety of the therapy over three months of repeated home use.
Methods: This was a prospective, open-label, post-clearance, single-arm study with 263 patients enrolled 
across 26 sites. Patients were instructed to use the therapy twice daily for three months. Pre-specified 
co-primary endpoints were improvements on clinician-rated Tremor Research Group Essential Tremor Rating 
Assessment Scale (TETRAS) and patient-rated Bain & Findley Activities of Daily Living (BF-ADL) dominant 
hand scores. Other endpoints included improvement in the tremor power detected by an accelerometer on the 
therapeutic device, Clinical and Patient Global Impression scores (CGI-I, PGI-I), and Quality of Life in Essential 
Tremor (QUEST) survey.
Results: 205 patients completed the study. The co-primary endpoints were met (p≪0.0001), with 62% (TET-
RAS) and 68% (BF-ADL) of ‘severe’ or ‘moderate’ patients improving to ‘mild’ or ‘slight’. Clinicians (CGI-I) 
reported improvement in 68% of patients, 60% (PGI-I) of patients reported improvement, and QUEST improved 
(p = 0.0019). Wrist-worn accelerometer recordings before and after 21,806 therapy sessions showed that 
92% of patients improved, and 54% of patients experienced ≥50% improvement in tremor power. Device-re-
lated adverse events (e.g., wrist discomfort, skin irritation, pain) occurred in 18% of patients. No device-re-
lated serious adverse events were reported.
Discussion: This study suggests that non-invasive neuromodulation therapy used repeatedly at home over 
three months results in safe and effective hand tremor reduction in many essential tremor patients.
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Introduction
Essential tremor (ET) is one of the most common move-
ment disorders [1]. Upper limbs are affected in virtually all 
ET patients, and other regions (e.g., head, voice, and lower 
limbs) are affected in some patients [2, 3]. ET can be phys-
ically, psychologically, and socially detrimental, and reduce 
the quality of life for patients [4–9]. The mechanisms of 
ET are not completely understood, but studies comparing 
neural activity, brain imaging, and electromyography data 
between ET patients and healthy adults suggest that ET is 
caused by rhythmic signaling within a central tremor neural 
network involving the ventral intermediate nucleus (VIM) of 
the thalamus [10–16].

Current pharmacotherapy options for ET include the use 
of nonselective β-blockers (propranolol) and anticonvuls-
ants (primidone) as first-line treatments, and topiramate, 
benzodiazepines, gabapentin, zonisamide, and pregabalin 
as second-line treatments, but patient responses to these 
medications are variable [17–22]. For patients who do not 
respond to medications, current alternative options are 
invasive neurosurgical procedures, including VIM deep 
brain stimulation (DBS), or magnetic resonance-guided 
focused ultrasound (MRgFUS) VIM thalamotomy [17, 23]. 
These second-line options, while effective for many, carry 
the significant safety risks and expenses associated with 
invasive procedures [24, 25].

Previous research demonstrating that electrical stimula-
tion of peripheral nerves at the wrist evoked activity within 
the VIM and other regions of the central tremor network 
led to the development of a non-invasive neuromodula-
tion therapy called Transcutaneous Afferent Patterned 
Stimulation (TAPS) [26, 27]. TAPS consists of bursts of 
non-invasive electrical stimulation alternating between the 
median and radial nerves at the wrist at a frequency tuned 
to an individual patient’s tremor. Two sham-controlled, 
randomized, single-session studies have shown TAPS to be 
a safe and effective symptomatic ET treatment [28, 29], 

leading to United States Food and Drug Administration 
(FDA) clearance [30, 31]. However, it is unknown how these 
single-session findings on TAPS safety and efficacy translate 
to longer-term efficacy as the therapy is used at home.

The goal of this study was to expand understanding of 
efficacy and safety of TAPS from usage in a single session to 
three months of repeated use. Efficacy was measured using 
clinical gold standard measurements, patient-reported 
outcomes, and objective kinematic tremor physiology end-
points. The study was run without a blinded sham arm due 
to the challenge of mimicking the sensation of stimulation 
or otherwise maintaining blind with an at-home device over 
three months of repeated use.

Methods
Study design and patient population
This study was a prospective, multi-center, single-arm, 
open-label clinical trial to evaluate the safety and efficacy 
of TAPS therapy over a three-month period. The therapy was 
delivered with an FDA-cleared wrist-worn neuromodulation 
device (Cala Health, Inc.; Burlingame, CA, USA). The study was 
registered as clinical trial (NCT03597100, clinicaltrials.gov) 
entitled Prospective Study for Symptomatic Relief of ET  
with Cala Therapy (PROSPECT). The study included three 
in-clinic visits: Visit 1 (patient screening and enrollment), 
Visit 2 (1-month follow-up), and Visit 3 (3-month follow-up 
and study completion). Between these visits, patients took 
the device home and were instructed to use the TAPS therapy 
twice daily (Figure 1A). The study protocol was approved by 
Institutional Review Boards for each participating site, and 
informed consent was obtained from each patient.

To be eligible for this study, patients had to have been pre-
viously diagnosed with ET by a physician, be ≥22 years of age, 
have at least one dominant hand task scoring ≥2 on the clini-
cian-rated Tremor Research Group Essential Tremor Rating 
Assessment Scale (TETRAS) [32] and ≥3 on the self-rated Bain 
& Findley Activities of Daily Living (BF-ADL) [33], and have a 
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total score across all dominant hand tasks ≥6 on TETRAS and 
≥8 on BF-ADL. The six TETRAS dominant hand tasks assessed 
were (1) forward outstretched postural, (2) lateral postural, (3) 
kinetic, (4) spiral, (5) handwriting, and (6) dot approximation, 
with each task rated on a scale of 0 (“no tremor”), 1 (“slight, 
barely noticeable tremor; <0.5 cm amplitude”), 2 (“mild, obvi-
ous tremor; <3 cm”), 3 (“moderate, portions of drawing or 
writing not legible; <10 cm”), to 4 (“severe, drawing or writing 
complete illegible; ≥10 cm”) [32]. The eight BF-ADL domin-
ant hand tasks assessed were (1) use a spoon to drink soup, 
(2) hold a cup of tea, (3) pour milk from a bottle, (4) dial a 
telephone, (5) pick up change, (6) insert an electric plug, (7) 
unlock front door, and (8) write a letter, with each task per-
formed using in-office props and rated on a scale of 1 (“able 
to do without difficulty”), 2 (“able to do with little effort”), 
3 (“able to do with a lot of effort”), to 4 (“cannot do without 
assistance”) [33]. If a patient was on medication to treat 
tremor, medication dosage had to be unchanged for at least 
30 days prior to enrollment. Exclusion criteria included prior 
DBS, prior thalamotomy, epilepsy, skin lesions or eruptions at 
the targeted stimulation site, neuropathy of the tested upper 
extremity, any neurodegenerative disease aside from tremor, 
use of botulinum toxin for treatment of hand tremor within 
six months of enrollment, pregnancy, and significant alcohol 
or caffeine intake within 8 hours before enrollment.

Device description, calibration, and usage
Patients were treated with a wrist-worn TAPS neuromodu-
lation device that consisted of an electrical stimulator and 

a detachable band with two working electrodes positioned 
over the median and radial nerves and a counter-electrode 
positioned on the dorsal side of the wrist (Figure 1B). For 
each TAPS therapy session, the device electrically stimu-
lated the median and radial nerves for 40 minutes with an 
alternating bursting pattern tuned to the frequency of each 
patient’s tremor (details below) [29]. The device included 
an onboard accelerometer to measure tremor physiology, 
and a base station that charged the device and streamed the 
device data to a centralized study database.

At Visit 1, study personnel fitted patients with a small, 
medium, or large band according to the patient’s wrist cir-
cumference, and helped patients set up the device. To cal-
ibrate the device’s bursting frequency, patients performed a 
series of 20-second postural holds to measure their tremor 
frequency (Figure 1C). For this calibration, patients per-
formed either a forward outstretched or lateral postural 
hold, based on whichever was more severe. To set the 
stimulation intensity, study personnel gradually increased 
the stimulation until the patient reported paresthesia in 
the hand and fingers corresponding to the distribution of 
the median and radial nerves. The stimulation was then 
further increased to the maximum level that caused no dis-
comfort or muscle contraction. Thereafter, at the start of 
each therapy session, the device ramped to this stimulation 
level and provided therapy for 40 minutes. Patients had the 
option to adjust the stimulation level at any time.

Patients received therapy sessions at each of the three 
in-clinic visits and were instructed to use the device at home 

Figure 1: Study design, therapeutic device, and calibration postures. (A) The study included 3 in-clinic visits over 3 
months with interim prescribed twice-daily home-use of therapy. (B) The wrist-worn device consisted of a stimulator, 
detachable band, and base station. The stimulator applied the stimulation pattern to the band and had an onboard 
triaxial accelerometer to measure tremor. The band contained two working electrodes positioned over the median and 
radial nerves and a counter-electrode positioned on the dorsal side of the wrist. The base station streamed accelerometer 
and usage data daily and charged the device. (C) Patients performed either a lateral or forward postural hold for device 
calibration and for tremor measurement pre- and post-stimulation.
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twice daily for three months. They were instructed to per-
form the home therapy sessions at least 2 hours apart and to 
refrain from alcohol, caffeine, and device usage for at least 
8 hours prior to the in-clinic visits. Immediately prior to and 
following each therapy session, the device prompted users 
to perform the postural hold used to calibrate the device 
at Visit 1 for 20 seconds, and the device’s accelerometer 
measured the tremor. Additionally, immediately prior to 
and following each of the three in-clinic therapy sessions, 
a clinician rated patients on TETRAS task performance and 
patients self-rated BF-ADL task performance using available 
in-office props.

Co-primary endpoint analyses
The pre-specified co-primary efficacy endpoints were 
improvement in total: (1) clinician-rated TETRAS dominant 
hand score, and (2) patient-rated BF-ADL dominant hand 
score. For each scale, the improvement was defined as the 
difference between the pre-stimulation score at Visit 1 and 
the post-stimulation score at Visit 3. The co-primary end-
points were analyzed for all patients who completed their 
third in-clinic visit.

The TETRAS dominant hand scores were further classified 
consistently with the 0 to 4-point TETRAS scale as either 
‘No tremor’ (total score of 0), ‘Slight’ (1–6), ‘Mild’ (7–12), 
‘Moderate’ (13–18), or ‘Severe’ (19–24). These categories 
correspond to having an average TETRAS score across the 
six assessed tasks of 0 (‘no tremor’), >0–1 (‘Slight’), >1–2 
(‘Mild’), >2–3 (‘Moderate’), and >3–4 (‘Severe’). Similarly, the 
BF-ADL dominant hand scores were classified as either ‘No 
tremor’ (total score of 8), ‘Mild’ (9–16), ‘Moderate’ (17–24), 
or ‘Severe’ (25–32), which correspond to having an average 
score across the eight assessed tasks of 1 (“able to do without 
difficulty), >1–2 (“able to do with little effort”), >2–3 (“able 
to do with a lot of effort”), and >3–4 (“cannot do without 
assistance”) on the 1 to 4-point ADL scale.

Changes in each of the following were tested with a 
2-sided t-test: (1) the co-primary endpoints, (2) TETRAS 
and BF-ADL scores from pre- to post-stimulation at each of 
the three in-clinic visits, and (3) TETRAS and BF-ADL scores 
from pre-stimulation at Visit 1 to pre-stimulation at Visit 
3. Changes in severity classifications (i.e., ‘Mild’ – ‘Severe’) 
from the Visit 1 pre-stimulation to Visit 3 post-stimulation 
assessments were summarized as the percentage of patients 
in each category. Total and per-task TETRAS and BF-ADL 
scores were summarized using measures of central tendency 
and variance.

Secondary endpoint analysis
The secondary efficacy endpoint was defined as the improve-
ment in tremor power between the pre- and post-stimulation 
postural holds, as measured by the device’s accelerometer. 
During each 20-second postural hold, wrist acceleration 
data were collected at a sampling frequency of 104 Hz. The 
first and last 4 seconds of these data were excluded to avoid 
transitions in and out of the postures. The algorithm to 
compute tremor power included six steps: (1) separating the 

remaining 12-second signal into five 2.4-second nonover-
lapping segments, (2) computing the power spectral density  
(PSD) for each segment using a fast Fourier transform 
(scipy.org, fft) with a 256-sample Hann window, (3) identi-
fying frequency of the peak tremor power in the 4–12 Hz 
band typically associated with ET, (4) computing the integral 
of the PSD for each of the three accelerometer axes in the 
±1.2 Hz frequency window centered on frequency identified 
in step 3, (5) summing over the three axes, and (6) averaging 
these results over the segments.

The change in each patient’s pre- and post-stimulation 
tremor power was defined as the median change over all 
valid stimulation sessions. Valid sessions were defined as 
all sessions with a complete 40-minutes of stimulation, 
pre- and post-stimulation measurement occurring within 
15 minutes of the stimulation start or end, and at least 2 
hours of time elapsed since the previous session. A Wilcoxon 
signed-rank test was used to test for a change from the pre- 
to post-stimulation tremor power.

The improvement ratio for each patient was defined as the 
median of the ratios of pre- to post-stimulation tremor power 
over all valid sessions. With this definition, an improvement 
ratio of 1 indicates that tremor power was unchanged from 
pre- to post-stimulation, a ratio >1 indicates that tremor 
power improved (i.e., decreased) from pre- to post-stimula-
tion, and a ratio <1 indicates that tremor power worsened 
(i.e., increased) from pre- to post-stimulation.

To compare the clinical TETRAS tremor severity ratings 
with the objective physiologic measurements of tremor 
power, at the first clinic visit patients performed three pos-
tural holds during which the device measured wrist accel-
eration and clinicians simultaneously provided TETRAS 
ratings. The association between the average TETRAS rating 
and the log10-transformed average tremor power was quanti-
fied using the Pearson correlation coefficient [34].

Safety endpoints
Device safety was evaluated by the incidence of device- and 
therapy-related adverse events (AEs). These data were sum-
marized using frequency counts and percentages.

Exploratory analyses
Exploratory analyses included evaluating Clinical and 
Patient Global Impression of Improvement (CGI-I, PGI-I, 
respectively) scores, assessed at the study’s conclusion, and 
change in the average domain score of Quality of Life in 
Essential Tremor Questionnaire (QUEST) from the start to 
conclusion of the study [35–37]. CGI-I and PGI-I scores were 
summarized using response percentages, and QUEST was 
tested for change using a 2-sided t-test.

To assess the effect of concurrent ET medication usage on 
treatment efficacy, the statistical comparisons evaluating 
co-primary and secondary endpoints were repeated for the 
on-medication and off-medication patient sub-groups.

To assess device usability, patients were asked to complete 
a product survey rating convenience and ease-of-use of the 
device. To assess the duration of therapeutic effect, patients 

http://scipy.org
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were asked “Did tremor relief last after a stimulation dose?” 
and, if they answered yes, were asked “On average, how long 
did tremor relief last after a stimulation dose?”.

Significance testing
All reported p-values have been adjusted using Holm-Bon-
ferroni corrections [38] for multiple comparisons. Signific-
ance for all analyses was set at p < 0.05 after corrections. 
Unless otherwise specified, outcome statistics are reported 
as mean ± 1 standard error.

Results
Study enrollment and completion
The study enrolled 263 patients across 26 sites (Table 1). 205 
of the 263 enrolled patients completed their third in-clinic 
visit and were included in the primary endpoint analysis. 

Discontinuations included withdrawal of consent (n = 27), 
adverse events (n = 8), investigator decision (n = 1), failure 
to complete Visit 3 procedures (n = 9), and other reasons 
(n = 13). Reasons cited for withdrawal from the study included 
time commitment, lack of benefit, device malfunctions, fear 
of AE reoccurrence, falling out of eligibility criteria, dislike of 
stimulation sensation, and other or unspecified reasons.

On average, these 205 patients completed at least 
one stimulation session per day for 78% of the days they 
were enrolled in the study and completed 68% of their 
total instructed (i.e., twice-daily) stimulation sessions (see 
Supplemental Figure 1 for distribution of stimulation ses-
sion adherence). 193 of these 205 patients completed a 
total of 21,806 valid stimulation sessions at home and were 
included in the secondary endpoint analysis. 10 patients 
were excluded due to errors with the accelerometer record-
ings, 2 patients were excluded due to incorrect device calib-
ration, and 1,808 stimulation sessions from the remaining 
193 patients were excluded due to missing valid pre- and/or 
post-stimulation measurements.

Co-primary outcomes
TETRAS and BF-ADL dominant hand scores improved 
from baseline to study exit (i.e., Visit 1 pre-stimulation 
to Visit 3 post-stimulation; Table 2, Figure 2). Patients 
showed improvement in TETRAS and BF-ADL from pre- to 
post-stimulation at each in-clinic visit (p ≪ 0.0001 for all six 
pairs; Figure 2). Additionally, pre-stimulation tremor level 
improved from Visit 1 to Visit 3 on both TETRAS and BF-ADL 
(p ≪ 0.0001 for both) (Figure 2).

The proportion of patients rated “Severe” or “Moderate” 
improved from 49.3% (TETRAS) and 64.8% (BF-ADL) at 
baseline (Visit 1 pre-stimulation) to 21.0% (TETRAS) and 
23.0% (BF-ADL) at study exit (Visit 3 post-stimulation; 
Figure 3A). While the magnitude of improvement varied 
between patients (see Supplemental Figure 2 for distribu-
tion of TETRAS and BF-ADL improvements), 62% of patients 
with a “Severe” or “Moderate” TETRAS score (score between 

Table 1: Enrolled patient demographics (N = 263).

Demographics

Female 52% (137)

Age 69.6 ± 10.1 (23–89)

BMI 28.2 ± 5.4 (16–48)

Race

Asian 4% (11)

Black or African American 3% (7)

White 90% (237)

More than one race 1% (3)

Unknown or not reported 2% (5)

Ethnicity

Hispanic or Latino 3% (7)

Not Hispanic or Latino 96% (253)

Unknown or not reported 1% (3)

Clinical Characteristics

Onset Age 43.9 ± 20.4 (2–79)

ET Duration 25.6 ± 18.1 (1–76)

Family History

Yes 62% (163)

No 27% (71)

Don’t Know 11% (29)

On ET Medications 66% (173)

On Antidepressant Medications 14% (36)

Prior ET Treatment (Any) 78% (206)

Prior ET Medications 78% (205)

Prior Botulinum 4% (11)

Responsive to Alcohol 37% (96)

Reported as % patients (#) or mean ± SD (min – max).

Table 2: Descriptive statistics of co-primary and secondary 
endpoints.

Baseline
Mean (SD)

Final visit
Mean (SD)

Change
Mean (SD)

Co-primary endpoints1

TETRAS dominant 
hand score2

12.6 (2.7) 9.8 (3.5) –2.8 (2.8)*

BF-ADL dominant 
hand score3

18.4 (3.8) 13.4 (4.4) –5.0 (4.3)*

Secondary endpoint4

Tremor power (m/s2)2 1.1 (4.4) 0.3 (1.1) –0.8 (3.7)*

* p ≪ 0.0001 after Holm-Bonferroni corrections for multiple hypo-
thesis testing.

1 n = 205; 2 Minimum score 0, maximum score 24; 3 Minimum score 
8, maximum score 32; 4 n = 193.
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Figure 2: Co-primary endpoints assessed in-clinic showed improvement in TETRAS and BF-ADL. Average TETRAS 
dominant hand score (left, scale range 0–24) and BF-ADL dominant hand score (right, scale range 8 to 32) are shown 
pre- and post-stimulation conducted at each in-clinic visit. The co-primary TETRAS and BF-ADL endpoints—improvement 
from baseline (pre-stimulation rating at Visit 1) to study exit (post-stimulation rating at Visit 3)—were both met (n = 205). 
Therapeutic response was also significant within each visit for both TETRAS and BF-ADL, and the pre-stimulation tremor 
rating improved significantly over 3 months of use. Error bars represent ±1 SEM, and * indicates p < 0.0001.

Figure 3: Tremor severity distributions shifted towards milder tremor at study exit. (A) The distribution of tremor 
severity at the time of co-primary endpoints (i.e., Visit 1 pre-stimulation to Visit 3 post-stimulation) were assessed for TET-
RAS (left) and BF-ADL (right). On both scales, the distribution of tremor severity shifted towards milder tremor. (B) Study 
exit (Visit 3 post-stimulation) tremor severity distributions were broken down for each baseline severity group for TETRAS 
(left) and BF-ADL (right). Most patients improved in tremor severity relative to their baseline or stayed in the same severity 
classification, with more severe patients showing greater improvement. Severity categories were defined consistent with 
TETRAS guidelines.
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13 and 24) improved to “Mild” or better (score ≤ 12), and 
68% of patients with a “Severe” or “Moderate” BF-ADL score 
improved to “Mild” or better (score ≤ 16; Figure 3B). Only a 
small number of patients worsened in severity category (5 
for TETRAS, 6 for BF-ADL; Figure 3B) or improved in sever-
ity category with a ≤1-point change in score (3 for TETRAS, 
1 for BF-ADL).

Per-task improvements from baseline to study exit showed 
that on any rated task, between 58%–80% (TETRAS) and 
61%–76% (BF-ADL) of patients who were rated as at least 
“Mild” improved at least one rating-increment on the task’s 
scale (Table 3). Per-task improvements were variable and 
responder rates were lower (between 45%–74%) among the 
full study population due to ceiling effects on improvement 
of patients scoring below “Mild” on each task (Supplemental 
Table 1; right columns).

Secondary outcomes
Tremor power improved during home use, with the mean 
tremor power over all patients decreasing from 1.1 ± 0.3 
(m/s2)2 pre-stimulation to 0.3 ± 0.1 (m/s2)2 post-stimulation 
(p ≪ 0.0001) (Table 2; Figure 4A). The log10-tremor power 
was correlated to the simultaneously measured TETRAS rat-
ings (r = 0.67, p ≪ 0.0001) (Figure 4B), with equation (1) 
describing the mathematical relationship.

 10log Tremor Power 1.26 TETRAS 3.13    (1)

A sample raw acceleration trace corresponding to a 9-fold 
reduction (i.e., strong therapeutic response) in tremor 
power from pre- to post-stimulation is shown for illustrat-
ive purposes (Figure 4C). Overall, daily usage of the device 
resulted in a median improvement in tremor power over all 
stimulation sessions for 92% of patients (Figure 4D). 54% 
of patients had a ≥2 improvement ratio in tremor power 
(i.e., post-tremor power ≤½ pre-tremor power, or 50% 
reduction in pre-tremor power), and 25% of patients had a 
≥3.3 improvement ratio (70% reduction) in tremor power.

Safety outcomes
No device-related serious AEs were reported. Non-serious 
device-related AEs occurred in 18% patients. The most 
common device-related AEs were persistent skin irritation 
(5% patients), sore/lesion (4% patients), discomfort (2% 
patients), electrical burns (2% patients), and minor skin irrit-
ation including itchiness or redness (2% patients) (Table 4). 
64% of the reported device-related AEs were rated by the 
clinical investigator as “Mild” (e.g., itchiness, discomfort), 
34% as “Moderate” (e.g., electrical burns, significant discom-
fort), and 2% (1 event) as “Severe” (a fall, that was possibly 
device-related). All device-related AEs were resolved either 

Table 3: Co-primary outcomes by task.

Patient count 
per task1

Baseline
Mean (SD) 

Final visit
Mean (SD)

Change
Mean (SD)

% Patients 
improved2

TETRAS Tasks3

Forward Outstretched 124 2.2 (0.3) 1.5 (0.6) –0.6 (0.6)* 78%

Lateral 140 2.3 (0.4) 1.7 (0.7) –0.6 (0.6)* 80%

Kinetic 163 2.3 (0.4) 1.7 (0.6) –0.6 (0.5)* 79%

Spiral 161 2.5 (0.7) 2.0 (0.8) –0.5 (0.8)* 58%

Handwriting 144 2.8 (0.7) 2.0 (1.0) –0.8 (0.8)* 67%

Dot Approximation 155 2.4 (0.5) 1.9 (0.7) –0.4 (0.6)* 66%

BF-ADL Tasks4

Use a spoon to drink soup 196 2.9 (0.6) 2.0 (0.9) –0.9 (0.8)* 70%

Hold a cup of tea 192 2.8 (0.7) 1.8 (0.9) –1.0 (0.9)* 71%

Pour milk from a bottle 182 2.8 (0.7) 1.8 (0.9) –1.0 (0.9)* 69%

Dial a telephone 131 2.6 (0.7) 1.8 (0.9) –0.8 (0.8)* 76%

Pick up change 134 2.6 (0.7) 1.8 (0.9) –0.8 (0.8)* 69%

Insert an electric plug 134 2.4 (0.5) 1.5 (0.6) –0.9 (0.8)* 69%

Unlock front door 148 2.4 (0.5) 1.5 (0.6) –0.9 (0.8)* 72%

Write a letter 192 2.3 (0.5) 1.5 (0.7) –0.8 (0.8)* 61%

* p ≪ 0.0001 after Holm-Bonferroni corrections for multiple hypothesis testing.
1 Count of patients scoring at least “Mild” per task (2 on TETRAS or BF-ADL).
2 Defined as % patients improving at least one increment (0.5 or 1, depending on scale and task).
3 Each TETRAS task rated 0–4 by clinician (0 = normal, 1 = slight, 2 = mild, 3 = moderate, 4 = severe).
4 Each BF-ADL task rated 1–4 by patient (1 = without difficulty, 2 = with a little effort, 3 = with a lot of effort, 4 = cannot do by yourself).
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Figure 4: Secondary endpoint from at-home accelerometer measures show improvement in tremor physiology 
with therapy. (A) Average tremor power decreased from pre-stimulation to post-stimulation (data represents 193 
patients and 21,806 total sessions). Error bars represent ±1 SEM, and * indicates p < 0.0001. (B) Tremor power, computed 
from the triaxial acceleration signals, was correlated to the clinician-rated TETRAS postural hold rating (r = 0.67, p < 
0.0001). (C) Example 3-second segment of the wrist acceleration time series along one of the three accelerometer axes 
with corresponding tremor power measures are shown for a single session before and after stimulation. (D) 92% of all 
patients had an improvement ratio > 1, indicating an improvement in tremor power from pre- to post-stimulation. Each 
bar represents a single-patient’s median improvement in tremor power from pre- to post-stimulation over all at-home 
stimulation sessions over three months (n = 193 patients).

Table 4: Device-related adverse events.

Adverse Event Type1 % Subjects (#) # Events

All 17.9% (47) 56

Significant and persistent skin irritation (including redness, itchiness, and/or swelling) 5.3% (14) 15

Sore/Lesion 3.8% (10) 11

Significant discomfort 2.3% (6) 7

Electrical burns 2.3% (6) 6

Other: minor skin irritation (including itchiness and/or redness) 2.3% (6) 6

Other: electric shock sensation while using device 1.1% (3) 3

Other: worsening of tremor 0.8% (2) 2

Other isolated events2 2.0% (5) 6

1 Rated by investigator to be possibly, probably or definitely device-related.
2 Each of the following occurred in only one patient: fall, anxiety, intermittent soreness in treated wrist, weakness or lack of coordination 

in treated hand, persistent pain from stimulation.
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without intervention, with decreasing stimulation amp-
litude, with a topical ointment such as aloe vera or hydro-
cortisone cream, or by discontinuing therapy until resolved. 
There was only one report of minor sequelae that occurred 
in a patient with pre-existing psoriasis. There were 6 with-
drawals due to device-related AEs, of which 3 were due to 
skin irritation and 3 were due to discomfort, anxiety, and 
tremor worsening.

Exploratory outcomes
After three months of use, clinicians reported tremor 
improvement in 68% of patients (15% much improved or 
very much improved; CGI-I) and 60% of patients self-re-
ported improvement (27% much improved or very much 
improved; PGI-I) (Figure 5). In QUEST surveys conducted 
after three months of use, patients indicated their quality of 
life improved (–3.1 ± 0.9 change in QUEST average domain 
score, p = 0.0019). Among the QUEST domains, physical 
domain improved the most (–6.3 ± 1.2, p ≪ 0.0001), fol-
lowed by work and finance domains (–3.6 ± 1.1, p = 0.0015).

The therapy was effective for patients, regardless of con-
current ET medication usage. Patients off ET medication 
(n = 66) improved by 3.2 ± 0.3 points on TETRAS (p ≪ 
0.0001) and 5.3 ± 0.5 points on BF-ADL (p ≪ 0.0001) from 
pre-stimulation Visit 1 to post-stimulation Visit 3. Patients 
on ET medication (n = 139) improved by 2.6 ± 0.2 points 
on TETRAS (p ≪ 0.0001) and 4.8 ± 0.4 points on BF-ADL 
(p ≪ 0.0001) from pre-stimulation Visit 1 to post-stimula-
tion Visit 3. Similarly, tremor power decreased from 1.40 ± 
0.74 pre-stimulation to 0.25 ± 0.10 post-stimulation (p ≪ 
0.0001) for patients off medication (n = 65), and from 0.91 ± 
0.30 to 0.28 ± 0.11 (p ≪ 0.0001) for patients on medication 
(n = 128). The improvements in TETRAS, BF-ADL, and tremor 
power were not statistically different between the patients 
off- and on-medication.

On patient surveys, 85% of patients reported that the 
device was convenient and easy to use, and 64% of patients 
reported persistent tremor relief after the 40 minutes of 
stimulation lasting on average 94 minutes (standard devi-
ation = 138; median = 60).

Discussion
This study suggested that TAPS therapy provided repeat-
able therapeutic benefit with a favorable safety profile over 
three months of use in adults with ET. Despite the hetero-
geneity of ET presentation, the day-to-day symptomatic 
variability of the disorder, and the variable therapeutic 
needs of individual patients, the therapeutic response was 
reproduced across multiple acute and longitudinal improve-
ment measures, including clinician-rated TETRAS and CGI-I 
scores, patient-rated BF-ADL, PGI-I, and quality of life scores 
(Figures 2, 3 and 5), and objective accelerometer-measured 
tremor power improvements (Figure 4).

The reductions in tremor and the absence of serious 
device-related adverse events suggest that TAPS is a safe and 
effective therapy option for ET. Over 50% of patients had a 
≥2-fold reduction in tremor power with daily TAPS ther-
apy (Figure 4D) and, for most (64%) patients, tremor relief 
endured on average 90+ minutes following the therapy ses-
sion. These tremor reductions are comparable to reductions 
obtained with first-line pharmacotherapies propranolol and 
primidone [17, 18]. While ET medications are effective in 
approximately half of patients, their side effects at the doses 
required to reduce tremor cause many patients to discon-
tinue use [17, 18, 20–22]. This study did not find a relation-
ship between concurrent ET medication usage and response 
to TAPS therapy, but future work is needed to better under-
stand the underlying patient characteristics and interactions 
between multiple therapeutic approaches. Further, around 
one in four patients in our study experienced tremor reduction 

Figure 5: Clinical and Patient Global impression of improvement (C/PGI-I). Clinicians and patients were surveyed 
with the 7-point global impression scale of improvement at Visit 3 post the in-clinic stimulation session to assess 
improvements in dominant hand tremor relative to baseline. Clinicians (CGI-I) and patients (PGI-I) reported hand tremor 
minimally, much or very much improved in 68% and 60% of patients, respectively.
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similar to the 55–90% tremor reduction reported for invas-
ive surgical therapies including DBS and MRgFUS [17, 23]. 
Though highly effective, DBS poses a risk of serious adverse 
events, can lead to dysarthria and dysphagia, and for some 
patients can lose efficacy over time [23, 39, 40]. Advanced 
age, cognitive impairment, and other health issues can limit 
access to DBS [41, 42], and some patients discontinue DBS 
therapy due to VIM DBS-related side effects [41]. MRgFUS also 
carries risks of side effects, with gait ataxia, unsteadiness, and 
hand ataxia as the most commonly reported AEs [23]. In a 
small number of patients, these side-effects were found to be 
irreversible. The TAPS therapy tested in this study was devoid 
of device-related serious AEs, and all AEs were reversible with 
small changes (e.g., lowering device stimulation level or top-
ical, over-the-counter ointment) or no intervention, differen-
tiating it from surgical and pharmacological treatments.

This study also demonstrated the benefits of adding 
objective at-home accelerometer-based measure of tremor 
physiology to standard in-clinic assessments. Consistent with 
previous reports of sensor-based measurements [43–45], 
this study’s accelerometer-based measurements of tremor 
power were correlated with gold-standard clinician-ratings 
(Figure 4B). While the improvements in TETRAS and BF-ADL 
scores quantified treatment efficacy for each patient at three 
instances over the three-month study duration, the acceler-
ometer-based metrics quantified treatment efficacy for, on 
average, 113 therapy sessions per patient (21,806 sessions 
for 193 patients). The objectivity and frequency of these 
sensor-based measurements overcome key limitations of 
previous single-session stimulation studies [28, 29]. These 
data demonstrate how wearable technologies can enable 
out-of-clinic remote monitoring of tremor and can be used 
to identify whether a treatment remains effective over longit-
udinal use [44, 45]. Future work that expands remote tremor 
physiology assessment to remove the inconvenience of per-
forming postural holds and to develop metrics that quantify 
functional ability throughout the day would benefit the field.

This study had a few important limitations that should be 
considered while interpreting its results. First, the open-la-
bel, single-arm design limits conclusions reliant on assess-
ment of longitudinal repeated-use sham response. A previous 
23-patient blinded, randomized single-session trial using an 
earlier version of TAPS therapy showed that TETRAS spiral 
drawing scores had greater improvements with TAPS therapy 
compared to sham [28]. A similarly constructed multi-site 
trial with 77 patients did not reproduce this spiral drawing 
finding, but found that TAPS therapy resulted in greater 
improvements compared to sham in the TETRAS scores 
summed for a lateral postural hold, forward outstretched 
postural hold, and kinetic finger-nose-finger testing, and 
improvements in tremor amplitude [29]. However, the latter 
study’s blinding index of 0.608 [46] suggested it would be 
challenging to successfully maintain a blind over months of 
at-home usage. An active sham with altered parameters such 
as a different stimulation bursting frequency or vibrotact-
ile sensory stimulation could be considered; however, such 

designs risk activating neural circuitry via alternate pathways 
and may not provide a true, treatment-free control. Future 
research to establish robust methods to longitudinally main-
tain a patient blind for peripheral neuromodulation ther-
apies would be a valuable asset for assessing novel therapies.

A sham arm could have also controlled for any improve-
ments due to learning effects as patients grew more comfort-
able with performing the various tremor tasks. For example, 
this study found pre-stimulation TETRAS and BF-ADL ratings 
at Visit 3 were lower than pre-stimulation ratings at Visit 1, 
which may be partially attributable to learning effects. A post-
hoc secondary endpoint analysis that segmented the at-home 
data into the first, second, and third months of the trial found 
that acute therapeutic efficacy was similar over time (median 
improvement ratios of 2.0 in month 1, 2.3 in month 2; and 
2.0 in month 3), and substantially greater than the improve-
ment in median pre-stimulation tremor power from month 
1 to month 3 (improvement ratio of 1.1). The consistency of 
response over the three months at home suggests a reprodu-
cible therapeutic effect even with task-learning effects. It is 
possible the cumulative reduction in baseline tremor sever-
ity may also be partially attributable to neurophysiological 
remodeling resulting from repeated use of TAPS therapy. 
Future studies on longitudinal mechanisms of action of this 
therapy could be valuable to understand this contribution.

Second, clinical raters were unblinded to the study’s design, 
which may have introduced bias into the TETRAS ratings, e.g., 
from pre- to post-stimulation at each of the three in-clinic 
visits. Encouragingly, the objective tremor measurements 
at the in-clinic visits showed that tremor power decreased 
with stimulation (median improvement ratio of 1.7 at Visits 
1 and 3) and that this decrease was directionally consist-
ent with reductions in clinical TETRAS ratings (Figure 4D). 
The confounding effect of rater-bias could be addressed by 
using central ratings blinded to the study timepoints. While 
TETRAS rating by video has been validated [47] and success-
fully used in some acute studies evaluating ET therapies [28, 
29], a recent study on non-invasive pharmacologic therapy 
suggested methodological concerns with central ratings [48].

Third, while the study found statistically significant 
reductions across all tremor subtasks in both the TETRAS 
and BF-ADL ratings, in part due to the study’s unpreced-
ented sample size, the magnitude of those reductions var-
ied between tasks (Table 3, Supplemental Table 1). Across 
tasks, there were 20–40% of patients for whom TAPS ther-
apy did not relieve specific tremor symptoms. We expect 
there are two main reasons driving the observed variability 
in individual and population-level response. Latent patient 
subtypes may influence the variable treatment response 
observed with all current ET therapies (i.e., pharmacother-
apy, invasive therapy (DBS, MRgFUS), and non-invasive TAPS 
therapy). While there is general consensus on the existence 
of these subtypes [49] (e.g., early-onset vs late-onset ET), the 
full range of sub-types, their clinical presentation, and their 
interaction with therapeutic interventions has not been 
fully characterized [50].
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Similarly, patients in this study had diverse symptomatic 
presentations of tremor. We do not expect TAPS therapy to 
improve tremor rating in a task that did not elicit tremor 
for that patient, which creates a ceiling on maximum 
improvement for that patient and accordingly lowers popu-
lation-level average improvements. To our knowledge there 
are no defined standards for what constitutes a clinically 
meaningful improvement in TETRAS or BF-ADL, though the 
resolution of the scales (0.5 or 1 point, depending on the 
scale and task) [32, 33] and the community characterization 
of intra- and inter-rater reliability for these scales [51, 52] 
suggests that minimum detectable improvement thresholds 
defined by the scale’s resolution can be considered clinic-
ally meaningful. Encouragingly, tremor improvements in 
this study were larger and consistently on the order of the 
task-specific minimum detectable improvements for the 
subsets of patient who had baseline tremor (i.e., at least a 
“Mild” tremor) in a given subtask (Table 3).

Finally, the pre-specified primary and secondary end-
points in this study excluded the fifty-eight patients who 
exited the study early and therefore did not qualify for the 
pre-specified analyses, which may have biased the study’s 
reported responder rates. Fourteen of these 58 patients 
cited “lack of device benefit” as the reason for withdrawal 
of consent. A worst-case analysis treating these 14 patients 
as “non-responders” would lower this study’s reported 
responder rates by less than 5%. However, a post-hoc ana-
lysis found improvements in TETRAS and BF-ADL were 
not statistically different between those that completed 
the study, those withdrew citing lack of benefit, and those 
that withdrew citing other reasons (e.g., adverse events, 
time commitment; Supplemental Figure 3A). Likewise, 
these patients’ median at-home improvement ratios were 
comparable (Supplemental Figure 3B). The similarity in 
response across these three patient cohorts suggests that 
the study reflected the expected range of therapeutic 
responses in the ET patient population; and the variabil-
ity in patient perception despite the similar measured 
response profiles highlights opportunities for the field to 
continue developing patient-centered metrics of meaning-
ful therapeutic improvement.

In conclusion, this study suggests that TAPS therapy is 
safe and improves hand tremor and quality of life over three 
months of use in a large cohort of patients with ET. Future 
work examining how these clinical trial results translate into 
the real-world setting would be valuable.
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