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Abstract— Objective: Musculoskeletal models provide a non-

invasive means to study human movement and predict the effects 
of interventions on gait. Our goal was to create an open-source, 
three-dimensional musculoskeletal model with high-fidelity 
representations of the lower limb musculature of healthy young 
individuals that can be used to generate accurate simulations of 
gait. Methods: Our model includes bony geometry for the full 
body, 37 degrees of freedom to define joint kinematics, Hill-type 
models of 80 muscle-tendon units actuating the lower limbs, and 
17 ideal torque actuators driving the upper body. The model’s 
musculotendon parameters are derived from previous anatomical 
measurements of 21 cadaver specimens and magnetic resonance 
images of 24 young healthy subjects. We tested the model by 
evaluating its computational time and accuracy of simulations of 
healthy walking and running. Results: Generating muscle-driven 
simulations of normal walking and running took approximately 
10 minutes on a typical desktop computer. The differences 
between our muscle-generated and inverse dynamics joint 
moments were within 3% (RMSE) of the peak inverse dynamics 
joint moments in both walking and running, and our simulated 
muscle activity showed qualitative agreement with salient 
features from experimental electromyography data. Conclusion: 
These results suggest that our model is suitable for generating 
muscle-driven simulations of healthy gait. We encourage other 
researchers to further validate and apply the model to study 
other motions of the lower-extremity. Significance: The model is 
implemented in the open source software platform OpenSim. The 
model and data used to create and test the simulations are freely 
available at https://simtk.org/home/full_body/, allowing others to 
reproduce these results and create their own simulations. 
 

Index Terms—musculoskeletal model, simulation, gait, 
walking, running, biomechanics  
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I. INTRODUCTION 
UMAN movement involves complex interactions between 
the neuromuscular and skeletal systems. Understanding 

these interactions is necessary for designing treatments and 
devices to improve the gait of impaired individuals and to 
enhance performance of able-bodied individuals. While some 
components of human motion, such as body segment 
kinematics, ground reaction forces, and muscle activity can be 
measured or estimated using non-invasive tools including 
motion capture, force plates, and electromyography, more 
invasive means are necessary to measure muscle tension [1] 
and joint contact forces [2]. Biomechanical models provide an 
alternate, non-invasive method to calculate these quantities, 
and have revealed, for example, how muscles coordinate the 
swing phase of gait [3] and contribute to body weight support 
and propulsion [4], [5], and how muscle coordination impacts 
joint contact forces [6]. Researchers have systematically 
modified models and simulations of healthy gait to investigate 
how anomalies such as bony deformities [7] or muscle 
weakness [8], [9] change coordination and lead to pathological 
gait patterns. Understanding the roles of muscles in gait 
provides insights that can then be used to guide treatment 
planning; for example, simulations have been used to indicate 
if a hamstring lengthening surgery could improve crouch gait 
in children with cerebral palsy [10]. 

An important consideration in creating a musculoskeletal 
model to simulate and study human motion is determining a 
suitable trade-off between model complexity and simulation 
speed. Torque-driven models have been used in optimal 
control problems [11]; while these models provide valuable 
insights and are computationally fast, they are limited in their 
biological fidelity. At the other extreme, finite element 
simulations of muscle represent complex muscle geometry 
well, but are computationally expensive [12]. Between these 
extremes are muscle-driven models with Hill-type muscle 
actuators and three-dimensional skeletal geometry, such as the 
models developed by Delp et al. [13], Klein Horsman et al. 
[14], Arnold et al. [15], and Carbone et al. [16] (Table I).  

Another important consideration is selecting appropriate 
experimental data to define the model’s parameters. The 
model created by Delp et al. has been used extensively to 
create muscle-driven simulations of gait and other lower-
extremity motions, but the musculotendon parameters (e.g., 
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optimal fiber length and pennation angle) are based on two 
studies of two and three cadavers [17], [18]. Klein Horsman et 
al. created a model with all parameters drawn from a single 
cadaver subject [14]. While this model is self-consistent, it is 
unclear how well this single subject represents other subjects. 
This model was recently updated by Carbone et al. [16] using 
a new dataset consisting of computed tomography and 
magnetic resonance images and implemented in the AnyBody 
Modeling System [19]; however, this model still reflects a 
single cadaver subject and thus may be unsuitable for scaling 
to a wide range of subjects. Arnold et al. [15] created a 
generic lower limb model using a comprehensive set of 
muscle architecture data collected by Ward et al. [20] from 21 
cadaver subjects.  

The model developed by Arnold et al. [15] has become 
widely used, but has two major drawbacks for use in muscle 
driven simulations. First, to represent musculoskeletal 
geometry accurately, the model makes extensive use of 
ellipsoidal wrapping surfaces [21]. Because there is no closed-
form solution for how a muscle path wraps over an ellipsoidal 
surface, computing muscle paths is computationally 
expensive. This makes this model impractical for many 
muscle-driven forward simulations. Moreover, because the 
model by Arnold et al. [15], and other models [13], [16], [22],  
derive optimal muscle force values from measurements of 
muscle volume from elderly cadavers with significant muscle 
atrophy, the muscle force distribution in the models may not 
accurately represent the distribution in young healthy 
individuals [23]–[25]. Fortunately, Handsfield et al. [26] 
recently used magnetic resonance imaging (MRI) to measure 
muscle volumes of 24 young healthy subjects and found that 
(i) total lower limb muscle volume is correlated with a 
subject’s mass and height and (ii) the distribution of individual 
muscle volumes within the lower limb is well preserved 
between subjects. 

Our goal was to build on the valuable data of Handsfield et 
al. to create a musculoskeletal model with high-fidelity 
representations of the lower limb musculature of healthy, 
young individuals suitable for simulating gait and that is 
computationally fast enough for use in muscle-driven 
simulations. We created a full-body model with muscle-

actuated lower limbs and a torque-actuated upper body. Lower 
extremity muscle architecture was defined by combining the 
cadaver-based estimates of optimal muscle fiber lengths and 
pennation angles [20] with young adult MRI muscle volume 
data [26]. To test that our model met the fidelity and speed 
criteria, we generated muscle-driven  simulations of walking 
and running using the open-source musculoskeletal simulation 
software, OpenSim [27]. We determined that our model met 
the fidelity criteria by comparing (i) the musculoskeletal 
geometry of our model to experimental data, (ii) our simulated 
muscle-generated joint moments to inverse dynamics joint 
moments, and (iii) our simulated muscle activity to 
electromyography (EMG) data. We determined that our model 
met the speed criteria by computing the time required to 
generate a simulation of a single gait cycle and ensuring that 
our model was as fast or faster than other frequently used 
models. This model was implemented in OpenSim [27], and is 
freely available for download at 
https://simtk.org/home/full_body/ along with all the data used 
to create the simulations.  

II. METHODS 

A. Rigid body geometry 
The model’s bony geometry and dimensions reflect those of 

a 75 kg, 170 cm tall male [15], [28]. The model’s skeleton was 
built of 22 articulating rigid bodies— a pelvis and right and 
left femur, patella, tibia/fibula, talus, calcaneus (including the 
tarsal and metatarsal bones), and toes to represent the lower 
body, and a combined head and torso and right and left 
humerus, ulna, radius, and hand to represent the upper body 
(Fig. 1). The model had 20 degrees of freedom in the lower 
body (six describing the pelvis and seven per leg; described 
below) and 17 in the torso and upper body (three describing 
the lumbar joint and seven per arm). We aligned the 
coordinate system of each rigid body such that, when the 
model is in the anatomical position, the x direction pointed 
anteriorly, the y direction superiorly, and the z direction to the 
right. For further details about the location of each coordinate 
system with respect to bony landmarks, see Arnold et al. [15].  

The position of the pelvis origin with respect to the ground 
origin was represented using three independent translational 
degrees of freedom. The orientation of the pelvis relative to 
ground was determined using a pelvis-fixed ZXY rotation by 
angles representing pelvis tilt, list, and rotation, respectively. 
The model is oriented such that at zero degrees pelvic tilt, list, 
and rotation, the two anterior-superior iliac spines and pelvic 
tubercles are in the frontal (y-z) plane. 

The femur articulated with the pelvis via a ball-and-socket 
joint. The orientation of the right femur relative to the pelvis 
was described by femur-fixed ZXY rotations of the femur by 
the hip flexion, adduction, and rotation angles, respectively, 
and similarly for the left hip. The hip joint range of motion 
was 30° extension to 120° flexion, 50° abduction to 30° 
adduction, and 40° external rotation to 40° internal rotation.  

The knee joint was modeled as a single degree of freedom 
joint. The orientation of the right tibia with respect to the right 

TABLE I 
LOWER LIMB MUSCULOSKELETAL MODELS 

Model Muscle architecture data 
sources Software 

Delp 1990 [13] 5 cadaver subjects [17], [18] SIMM, 
OpenSim 

Klein Horsman 2007 [14] Single cadaver limb [14] AnyBody, 
OpenSim 

Arnold 2010 [15] 22 cadaver subjects [20] SIMM, 
OpenSim 

Carbone 2015 [16] Single cadaver limb [16] AnyBody 

Our model 24 adult subjects [26], 
22 cadaver subjects [20] 

OpenSim 

Previously published musculoskeletal models have been based on a 
variety of data sets describing skeletal geometry and muscle architecture. 
The models described above have been implemented in either OpenSim [27] 
or AnyBody [19]. 
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femur was primarily determined by rotation of the tibia about 
the femur-fixed –Z axis by the knee flexion angle, and 
similarly for the left knee. The coupled rotation and translation 
of the tibia relative to the femur was parameterized by the 
knee flexion angle using the joint kinematic equations defined 
by Walker et al. [29], modified such that the joint reference 
frame on each body was coincident with anatomic 
approximations of the center of rotation. Similarly, patellar 
kinematics were parameterized by the knee flexion angle 
using the kinematics defined in Arnold et al. [15], modified 
such that the patella articulated with the femur. The knee 
flexion angle had a range of 0° to 120° flexion. 

The ankle, subtalar, and metatarsophalangeal joints were 
each modeled as pin joints with coordinates representing ankle 
dorsiflexion, ankle inversion, and toe flexion angles 
respectively. The joint axes for these three joints were 
consistent with measurements made by Inman et al. [15], [30]. 
The ranges of motion were 40° plantarflexion to 30° 
dorsiflexion, 20° eversion to 20° inversion, and 30° toe 
extension to 30° toe flexion. 

The ranges of motion for the lower body degrees of freedom 
were specified to be consistent with previously published 
models (e.g., [13] and [15]) and encompassed the walking and 
running motions simulated with our model. These limits, and 

 
Fig. 1.  Rigid bodies and degrees of freedom in the model. The model was 
implemented in OpenSim with 22 rigid bodies representing the lower body 
(pelvis, and right and left femur, patella, tibia and fibula, talus, calcaneus 
(including the tarsal and metatarsal bones, and toes) and upper body (head 
and torso, and right and left humerus, ulna, radius, hand). There were seven 
degrees of freedom in each lower limb (labeled for the right limb), three 
rotational (labeled) and three translational (not labeled) degrees of freedom 
in the pelvis, and seventeen degrees of freedom in the upper body (not 
labeled). 
  

 
Fig. 2.  Muscles were modeled as massless linear actuators. (a) The model 
included 80 muscle-tendon units (40 per leg) actuating the lower limbs. (b) 
Muscles with broad attachment areas (e.g., gluteus medius) were modeled 
using multiple independent muscle-tendon units. (c) Muscle geometry was 
modeled using a set of body-fixed points (highlighted) and wrapping 
surfaces. (d) The force transmission mechanism between the quadriceps and 
patellar ligament was modeled implicitly by wrapping the quadriceps 
muscles over the patella and inserting the muscles directly to the tibia. 
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any parameter of the model, can be changed to the user’s 
preference by editing the model file. 

The head and torso were modeled as one rigid segment 
connected to the pelvis by a ball-and-socket joint. The 
orientation of the torso with respect to the pelvis was specified 
using torso-fixed ZXY rotations (lumbar extension, bending, 
and rotation, respectively). The humerus articulated with the 
torso by a ball-and-socket joint; the orientation of the right 
humerus with respect to the torso was given by humerus-fixed 
ZXY rotations (shoulder flexion, adduction, and rotation, 
respectively). The ulna connected to the humerus via a pin 
joint at the elbow. Pronation of the forearm was modeled by a 
pin joint connecting the radius and ulna. A two degree of 
freedom universal joint connected the hand to the radius; the 
orientation of the hand with respect to the radius was given by 
hand-fixed ZX rotations (wrist flexion, ulnar deviation, 
respectively). Because the upper body was provided primarily 
to track gross motion of the torso and upper extremities in 
gait, these joint descriptions did not capture detailed upper 
body joint kinematics, such as complex scapular motion or 
bending of the spine.  
 

B. Muscle and torque actuators 
The model was actuated by 80 muscle-tendon units in the 

lower body (40 per leg, listed in Table II, shown in Fig. 2a) 
and 17 torque actuators (one for each degree of freedom in the 
upper body). Each muscle-tendon unit was massless and had a 
line of action approximating the path of the anatomical muscle 
volume from origin to insertion. Muscles with large 
attachment areas (e.g., gluteus medius) were modeled as 
several independent units (Fig. 2b). The path of each muscle-
tendon unit was specified using a set of body-fixed origin and 
insertion points and, when needed, additional path points and 
cylindrical wrapping surfaces that model physical constraints 
from bone and soft tissue (Fig. 2c). We did not model the 
patellar ligament directly, and instead defined the quadriceps 
lines of action to wrap over the patella and insert onto the tibia 
(Fig. 2d). Muscle paths were adapted from Arnold et al. [15] 
and all ellipsoidal wrapping surfaces were replaced with 
cylindrical wrapping surfaces. Because there is an analytic 
solution for how a muscle path wraps over a cylindrical 
surface [31], we expected this would improve simulation 
speed. We verified that we preserved the muscle geometry by 
comparing model moment arms of the major muscles crossing 
the hip, knee, and ankle to experimentally measured moment 
arms (Supplemental Fig. 1 and Supplemental Fig. 2) [12], 
[32]–[40]. 

Each muscle-tendon unit was represented with the Hill-type 
muscle model [41] (Fig. 3a) described by Millard et al. [42]. 
The force-generating capacity of each muscle-tendon unit was 
specified using normalized fiber force-length-velocity and 
tendon force-length curves (Fig. 3b-d) scaled for each muscle 
by a set of experimentally determined values for muscle 
maximum isometric force, optimal fiber length, maximum 
fiber shortening velocity, pennation angle at optimal fiber 
length, and tendon slack length (Table II). The normalized 

active fiber force-length curve (Fig. 3c, solid line) was 
modified from the force-length curve published by Millard et 
al. [42] to account for the wider force-producing range of a 
whole muscle as opposed to a ingle muscle fiber [43]. The 
passive fiber force-length curve (Fig. 3c, dotted line), fiber 
force-velocity curve (Fig. 3d), and tendon force-strain curves 
(Fig. 3b) were taken directly from Millard et al. [42]. 

The musculotendon parameters in the model were taken 
from cadaver studies by Ward et al. [20] and from MRI 
muscle volume data measured by Handsfield et al. [26]. For 
each muscle-tendon unit, the optimal fiber length was taken 
directly from the mean optimal fiber length calculated by 
Ward et al. To set the tendon slack length, the model was 
posed at 7° hip flexion, 2° hip abduction, 0° knee flexion, and 
20° plantarflexion. These hip flexion, hip adduction, and knee 
flexion angles were chosen to match the average pose of the 
cadavers in the Ward et al. study [20]. The 20° plantarflexion 
angle was chosen to be consistent with the methods of Arnold 
et al. [15], since they found that setting tendon slack length 
with the model posed at the average cadaveric angle of 40° 
from Ward et al. [20] resulted in high passive forces in the 
ankle plantarflexors. After posing the model, the tendon slack 
length of the muscle-tendon unit was then set such that the 
normalized fiber length of the muscle-tendon unit, with 1% 
activation, matched the experimentally measured mean 
normalized fiber length reported by Ward et al. [20]. This 
method yielded unrealistically long fibers in the 
semimembranosus muscle-tendon unit when the hip was 
flexed and the knee fully extended, and thus large passive hip 
extension and knee flexion moments; because of this, we set 
the tendon slack length of the semimembranosus such that, 
when the model is posed as previously described and the 
muscle activation is set to 1%, the fiber length in our model 
matched the fiber length in the Arnold et al. model [15] 
instead of the fiber length reported in the Ward et al. data [20]. 
For any muscle-tendon unit whose tendon slack length was 
smaller than its optimal fiber length, we assumed tendon strain 
would be negligible in muscle force calculations and therefore 
modeled the tendon as rigid [41], [42]. This was done to 
increase the computational speed of our simulations [42], as 
stiff tendons increase the number of time steps required during 
numerical integration in forward simulations. Using this 
criterion, 17 of the 40 muscle-tendon units in each leg were 
modeled with a rigid tendon (Table II).  This can be easily 
changed for any muscle by editing the model in OpenSim.  

The pennation angle at optimal fiber length was calculated 
using the mean pennation angle measured by Ward et al. [20] 
and based on the constant muscle volume assumption used by 
Millard et al. in their muscle model [42]. Specifically, 
pennation angle at optimal fiber length, !", was calculated as 

!" = sin'( )* sin ! ,       (1) 
where α and )* are the pennation angle and normalized fiber 
length, respectively, measured by Ward et al. [20].  
 The optimal force for each muscle was calculated using 
MRI muscle volume data. The total muscle volume (+,",-.) of 
each lower limb was calculated based on our model’s mass 
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(/) and height (ℎ) using the relationship reported by 
Handsfield et al. [26] as shown in (2). 

+,",-. = 47/ℎ + 1285|*9:;<=,?9(.:A*   (2) 
Individual muscle volumes were calculated based on the 

mean lower limb muscle volume fraction (B*) for each 
muscle also reported in the Handsfield et al. study. From here, 
the muscle physiological cross-sectional area (PCSA) of each 
muscle was calculated as the muscle volume divided by the 
optimal fiber length ()"*) of the muscle. Maximum isometric 
fiber force (C"*) was assumed to be directly proportional to the 
muscle PCSA as in (3). 

C"* = D"*
EFGHIHJK

.IF
       (3) 

Previously reported estimates of specific tension (D"*) in 
mammalian muscle vary widely, from 15 N/cm2 [44] to over 
100 N/cm2 [45]. We chose a specific tension of 60 N/cm2, 
within this range. This specific tension resulted in our model 
generating higher passive joint torques at extreme joint angles 
compared to experimental data (Supplemental Fig. 3, (a), (d), 

(f)) and allowed our model to generate higher maximum 
isometric joint moments than those measured  during 
maximum voluntary contraction trials (Supplemental Fig. 3, 
(b), (c), (e), (g)), but was necessary for our model to produce 
muscle-generated joint moments high enough to match those 
produced in dynamic motions such as running. 

 

C. Model testing: sample simulations of gait 
We first tested our model’s ability to simulate gait by using 

our model in OpenSim version 3.3 [27] to generate muscle-
driven forward simulations of a single gait cycle of a 31-year-
old male subject (height 182 cm, mass 85 kg) walking at self-
selected speed and a 24-year-old male subject (height 178 cm, 
mass 73 kg) running at 4 m/s. Experimental data used to 
generate these simulations are described in the Appendix. To 
create these simulations, we first used the Scale Tool in 
OpenSim [27] to create a scaled version of the generic model 
that matched our subject anthropometry. We also used the 

 
Fig. 3. Computational model of muscle-tendon units. Muscles were represented as massless linear actuators with active and passive properties described by 
scalable generic force-length and force-velocity curves [42]. The generic curves were scaled by five muscle-specific parameters: maximum isometric force 
(FM

o), tendon slack length (lT
s), optimal fiber length (lM

o), maximum fiber shortening velocity (vmax), and pennation angle at optimal fiber length (αo). (a) The 
total muscle-tendon length (lMT) was a function of the geometric pose of the model. The muscle fiber length (lM), muscle pennation angle (α), and tendon length 
(lT) were determined based on lMT, muscle activation, and the force equilibrium constraints between the muscle fiber (FM) and tendon (FT). (b) Tendon was 
modeled as a passive series elastic element whose normalized force (FT/FM

o) was a function of tendon strain (εT). Tendon strain was calculated from the muscle-
specific tendon slack length (lT

s). We assumed a tendon strain (εT) of 4.9% [42] when the muscle developed maximum isometric force (Fo
m). (c) Muscle fiber 

was modeled as an active contractile element (CE) in parallel with a passive elastic element. Active isometric fiber force was a function of muscle activation (a) 
and fiber length normalized by optimal fiber length (lM/lM

o). Passive fiber force was a function of normalized fiber length (lM/lM
o) only. (d) Muscle active 

isometric fiber force was scaled based on fiber velocity (vM) normalized by maximum shortening velocity (vmax) of the muscle. Total muscle force was 
calculated as the sum of active and passive fiber force. 
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mass-height-volume relationship for lower extremity muscle 
reported by Handsfield et al. [26] and described in equations 
(2) and (3) to scale the model maximum isometric muscle 
forces based on our subject’s mass and height. Joint 
kinematics for each motion were computed from motion 
capture data using the Inverse Kinematics tool in OpenSim. In 
this and future steps, we constrained the subtalar and 
metatarsal-phalangeal joints in the model to be 0° (neutral); 

this was done because the motion capture data used to 
generate these simulations were not of fine enough resolution 
to accurately capture movement in these degrees of freedom. 
For the same reason, we locked the wrist flexion and ulnar 
deviation degrees of freedom in the wrist. The Residual 
Reduction Algorithm (RRA) [27] was then used to generate a 
smoothed set of kinematics that reduced the dynamic 
inconsistency between the measured kinematic and kinetic 

TABLE II 
MUSCULOTENDON PARAMETERS 

Muscle Abbreviation Optimal 
force (N) 

Optimal fiber 
length (cm) 

Tendon slack 
length (cm)

 a 
Pennation 
angle (º) 

Adductor brevis addbrev 626 10.3 3.5* 6.6 
Adductor longus addlong 917 10.8 13.2 7.9 

Adductor magnusb      
     Adductor magnus (distal) addmagDist 597 17.7 8.7* 11.2 
     Adductor magnus (ischial) addmagIsch 597 15.6 21.6 9.6 
     Adductor magnus (middle) addmagMid 597 13.8 4.7* 11.9 
     Adductor magnus (proximal) addmagProx 597 10.6 4.0* 17.8 
Biceps femoris long head bflh 1313 9.8 32.5 10.1 
Biceps femoris short head bfsh 557 11.0 10.6* 15.1 
Extensor digitorum longusc edl 603 6.9 36.9 12.5 
Extensor hallucis longusc

 ehl 286 7.5 32.7 11.3 
Flexor digitorum longus fdl 423 4.5 37.9 12.9 
Flexor hallucis longus fhl 908 5.3 35.4 14.8 
Gastrocnemius lateral head gaslat 1575 5.9 37.6 12.0 
Gastrocnemius medial head gasmed 3116 5.1 39.9 9.5 

Gluteus maximusb      
     Gluteus maximus (superior) glmax1 984 14.7 4.9* 20.3 
     Gluteus maximus (middle) glmax2 1406 15.7 6.8* 21.0 
     Gluteus maximus (inferior) glmax3 948 16.7 7.0* 21.9 
Gluteus mediusb      
     Gluteus medius (anterior) glmed1 1093 7.3 5.6* 18.1 
     Gluteus medius (middle) glmed2 765 7.3 6.5* 18.1 
     Gluteus medius (posterior) glmed3 871 7.3 4.5* 18.1 
Gluteus minimusb

      
     Gluteus minimus (anterior) glmin1 374 6.8 1.6* 10.0 
     Gluteus minimus (middle) glmin2 395 5.6 2.6* 0.0 
     Gluteus minimus (posterior) glmin3 447 3.8 5.1 1.0 
Gracilis grac 281 22.8 17.2* 9.9 

Iliacus iliacus 1021 10.7 9.6* 16.0 
Peroneus brevisd perbrev 521 4.5 14.8 11.8 
Peroneus longusd perlong 1115 5.1 33.2 14.2 
Piriformis piri 1030 2.6 11.5 10.0 
Psoas psoas 1427 11.7 10.0* 12.3 
Rectus femoris recfem 2192 7.6 44.9 12.4 
Sartorius sart 249 40.3 12.4* 1.5 
Semimembranosus semimem 2201 6.9 34.8 14.6 
Semitendinosus semiten 591 19.3 24.7 13.8 
Soleus soleus 6195 4.4 27.7 21.9 
Tensor fascia latae tfl 411 9.5 45.0 3.0 
Tibialis anterior tibant 1227 6.8 24.1 11.2 
Tibialis posterior tibpost 1730 3.8 28.1 13.0 

Vastus intermedius vasint 1697 9.9 20.2 3.6 
Vastus lateralis vaslat 5149 9.9 22.1 14.5 
Vastus medialis vasmed 2748 9.7 20.0 24.2 

Musculotendon parameters. Muscle physiological cross sectional areas (PCSAs) were calculated from muscle volumes measured by Handsfield et al. [26] in 
healthy, young subjects. Optimal fiber lengths were measured by Ward et al. [20] in cadaver subjects. Pennation angle at optimal fiber length was calculated 
using pennation angle measurements in cadavers by Ward et al. and adjusted for fiber length using the constant-volume assumption made by Millard et al. 
Tendon slack length was set in the model to match normalized fiber length measurements reported by Ward et al.  

aTendons were modeled as rigid when the tendon slack length was less than the muscle optimal fiber length. Rigid tendons are indicated with a (*). 
bMuscle volume was only available for the whole muscle.  Total muscle volume for each muscle was divided equally between the muscle-tendon units using 

the same volume distribution as in the model by Arnold et al. [15]. 
cMuscle volume was only available for extensor digitorum longus, extensor hallucis longus, and peroneus tertius combined. Peroneus tertius was not included 

in our model. The total muscle volume was divided between extensor digitorum longus and extensor hallucis longus using the volume proportions used by 
Arnold et al. [15]. 

dMuscle volume was only available for peroneus brevis and peroneus longus combined. The total muscle volume was divided between the two using the 
volume proportions used by Arnold et al. [15]. 
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data. These smoothed kinematics differed from the inverse 
kinematics results by less than 2° for all rotational degrees of 
freedom in the model (rotation) and 2 cm for pelvis 
translations at any time step and had a maximum RMS error of 
less than 1.75° (rotation) and 1 cm (pelvis translation) for both 
walking and running over the gait cycle. The smoothed 
kinematics were input into the Computed Muscle Control 
(CMC) algorithm [46], which uses forward simulation and a 
feedback controller that tracks the input kinematics to 
calculate muscle excitations, muscle activations, and muscle 
forces. CMC solves the muscle redundancy problem by 
computing muscle excitations (L*) and excitations of the ideal 
torque actuators (LM) that minimize the objective function J 
shown in (4). 

N = ∑*9(
PFQRS.L*T + ∑M9(

PUVWLMT,      (4) 
We constrained the muscle excitations of the gastrocnemius 
medialis and lateralis muscles to be off in early to mid swing 
to improve numerical stability of our simulation and better 
match the recorded EMG signal. 

We used the simulation results to compute, for each joint, 
the net muscle-generated joint moments (X*YZ[.\) throughout 
the motion as the sum over all muscles of muscle moment arm 
(/]) multiplied by the muscle force (C*) as in (5). 

X*YZ[.\ = /]^ ∙ Ĉ*PFQRS.
^9(      (5) 

Separately, we used inverse dynamics to compute the joint 
moments required to produce the smoothed gait kinematics. 
To generate the muscle-driven simulations, ideal torque 
actuators for each degree of freedom supplied small moments 
to account for the differences between the muscle-generated 
and inverse dynamics joint moments. We evaluated the 
simulation by verifying that the muscle-generated joint 
moments in the lower extremity accounted for at least 90% of 
the inverse dynamics joint moments at each instant in time 
[47], indicating that the muscles rather than these torque 
actuators were driving the motion. We also qualitatively 
compared the timing of the computed muscle activity to the 
subject’s recorded EMG data to determine if our simulations 
reproduced the major features of the experimental EMG (e.g., 
vasti activity in stance that is larger for running than for 
walking)  [48]. Because muscle activity during maximum 
voluntary contraction was not available for both subjects, and 
because we sought only to compare timing of the simulated 
muscle activity with measured EMG activity, we normalized 
peak EMG activity for each muscle and condition to match the 
peak simulated muscle activity. 

We next measured the average computation time required to 
generate muscle-driven simulations of single gait cycles of 
walking and running using our model and the CMC tool. To 
do this, we used our model with previously collected 
experimental data [48], [49] to automatically generate 80 
muscle-driven simulations spanning 3 subjects, 8 speeds (4 
walking, 4 running), and 3 to 6 gait cycles per subject/speed. 
These simulations were used only to verify robustness of the 
model within the OpenSim simulation pipeline and to 
calculate the average computation time required to generate 
muscle-driven simulations using our model, and as such, we 

did not carefully tune the RRA and CMC algorithm settings, 
nor did we carefully validate the simulation outputs. 

Finally, we compared the simulation computation time of 
our model to two other commonly used OpenSim models [13], 
[15]. We used a version of the Delp model [13] modified to 
include arms [48] and the CMC tool to generate the simulation 
of the same subject running. The Arnold model [15] was 
prohibitively slow and not able to be used with the CMC tool 
to generate a muscle-driven simulation of gait. We instead 
used the Static Optimization tool [27] and, for the time periods 
where we were able to run a simulation with the Arnold 
model, computed the ratio of computation time required 
between the Arnold model and our model. 

III. RESULTS 
Computing dynamically consistent, smoothed joint 

kinematics from motion capture data using the Inverse 
Kinematics and RRA tools took less than 1 minute of 
computation time per gait cycle on one thread of a 2.6 GHz 
Intel Core i7 processor. The CMC computation time (i.e., the 
time to compute the pattern of coordinated muscle activity to 
drive a forward simulation that matches the smoothed 
kinematics) was greater. Computing muscle activations for 
one gait cycle of walking and running using the CMC tool 
took, on average, 14 and 9 minutes, respectively. 

Generating the same running simulation using the Delp 
model and the CMC tool was 11% faster than using our model 
(8 minutes vs. 9 minutes). Computing the Static Optimization 
results using the Arnold model took 40% longer than using 
our model. It should be noted that Static Optimization does not 
run a forward simulation nor compute muscle-tendon 
equilibrium; we expect that adding these components would 
further increase the computational time required by the Arnold 
model compared to our model. 

The muscle-driven simulations tracked the smoothed joint 
kinematics with a maximum coordinate RMS error of less than 
1° (rotation) and 0.1 cm (pelvis translation) for walking, and 
4° (rotation) and 0.2 cm (pelvis translation) for running. The 
RMS error between the inverse dynamics joint moments and 
the muscle-generated joint moments were 0.4 N-m, 1 N-m, 
and 0.3 N-m for hip, knee, and ankle flexion, respectively, for 
walking; and 3 N-m, 7 N-m, and 5 N-m for hip, knee, and 
ankle flexion, respectively, for running (Fig. 4). These RMS 
errors were less than 2% of the peak joint moments in 
walking, and less than 3% of the peak joint moments in 
running. Peak absolute differences between the inverse 
dynamics and muscle-generated joints moments were 1 N-m, 
3 N-m, and 1 N-m for the hip, knee, and ankle flexion, 
respectively for walking; and 9 N-m, 26 N-m, and 14 N-m for 
the hip, knee, and ankle flexion, respectively for running. 
These peak differences were less than 6% of the peak joint 
moments in walking, and less than 11% of the peak joint 
moments in running.  

The timing of the simulated muscle activations represented 
some of the major features of the measured EMG signals (Fig. 
5). In walking, simulated activations and measured EMG 
signals both show hip extensor (gluteus medius and biceps 
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femoris long head) and knee extensor (vastus lateralis) activity 
in early stance, plantarflexor (gastrocnemius and soleus) 
activity in late stance prior to toe-off, and tibialis anterior 
activity in early stance and swing, and hamstring (biceps 
femoris long head) activity in terminal swing prior to foot 
strike to brake the swing limb. Similarly, in running, we see 
gluteus maximus and gluteus medius simulated and EMG 
activity in stance, quadriceps (rectus femoris and vastus 
lateralis) activity in early stance, plantarflexor (gastrocnemius 
and soleus) activity in stance, increasing prior to toe-off, and 
tibialis anterior activity in early stance and swing. However, 
there are some notable differences between the simulated 
muscle activity and the EMG data. For example, in simulated 
walking, we saw activity for the gluteus maximus only in early 
stance, and activity for the gluteus medius throughout stance. 
This disagrees with the measured EMG signal which shows 
relatively constant gluteus maximus activity in gait and 
gluteus medius activity primarily in early stance. However, 
EMG activity in the gluteal muscles are susceptible to 

measurement error due to interference from other soft tissues. 
Our simulations results for the gluteal muscles agree with 
expected activity in stance published by Perry [50]. We also 
saw higher simulated activity in the tibialis anterior in swing 
compared to stance in both walking and running than we 
would expect given the EMG signal. This is likely to 
counteract the residual force in the plantarflexors after toe-off 
arising from the passive stretch of the plantarflexor fibers in 
the model.  

Finally, as expected, our simulated activity shows greater 
activity in running compared to walking. For example, we see 
greater gluteal and quadriceps activity in stance in running 
compared to walking, and greater activity in the plantarflexors 
(soleus and gastrocnemius) prior to toe-off in running 
compared to walking. Furthermore, although our simulated 
muscle activity was high, especially in running, we did not 
maximally activate any of these muscles; this is encouraging 
as it suggests that our model strength may be well tuned to 
saturate at higher, maximal activities such as high-speed 

 
Fig. 4. Joint moments for one gait cycle of walking and running. Joint moments for the hip, knee, and ankle joint during (a) walking and (b) running were 
computed using inverse dynamics (ID) and then compared to the net muscle-generated joint moments from the muscle-driven forward simulation (CMC). Toe-
off (TO) is indicated with the gray vertical line. 
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sprinting or maximum height jumping. 

IV. DISCUSSION 
We created a full-body musculoskeletal model 

representative of a healthy young individual that can be used 
to create simulations of human walking and running. Our 
model can generate muscle-driven simulations of gait within a 
few minutes on a typical desktop computer. Using the CMC 
algorithm in OpenSim, we are able to compute muscle 
activations for a single gait cycle of walking and running in 
approximately 10 minutes on a single processor. We did not 
benchmark the time required to generate a muscle-driven 
simulation using the model by Arnold et al. [15] as this model 
was not able to be used to generate a muscle-driven simulation 

using CMC; however, the 10 minutes is comparable to the 
time required for a previous model by Delp et al. [13]. The 
simulations tracked smoothed experimental kinematics to 
within 4.0° and the muscle-generated joint moments differed 
from the inverse dynamics joint moments by less than 11% 
(peak) and 3% (RMSE) of the peak joint moment. The 
simulated muscle activity captures some of the salient features 
of experimental EMG data, though there are differences in 
timing and magnitude of some muscle activations when 
compared to EMG data. Obtaining simulated activations that 
faithfully match measured EMG of all muscles remains an 
important challenge in all studies involving muscle-driven 
simulations. 

We believe that our model can be used to generate accurate 

 
Fig. 5. Computed muscle activations compared to measured EMG for the major lower extremity muscles during walking and running. Simulated muscle activity 
in (a) walking and (b) running for the gluteus maximus, gluteus minimus, rectus femoris, vastus lateralis, biceps femoris long head, gastrocnemius lateralis, 
tibialis anterior, and soleus are shown in red. The corresponding experimental EMG signals are shown by the gray shaded regions. The EMG signal for each 
muscle was normalized such that the peak EMG signal matched the peak simulated activity for that muscle during the gait cycle. Toe-off (TO) timing is 
indicated with a (*). 
  



TBME-00966-2015.R2-preprint 
 

10 

simulations of normal walking and running gait because (i) 
our model muscle geometry compares well with experimental 
data (Supplemental Fig. 1 and Supplemental Fig. 2), (ii) our 
muscle architecture parameters, such as maximum isometric 
force and optimal fiber length are based on the most 
comprehensive available studies (Fig. 3, Table II) and are 
representative of a generic individual, (iii) our model can be 
used to generate muscle-driven simulations of gait without 
excessively relying on lower limb reserve torque actuators 
(Fig. 4), and (iv) the timing of our simulated muscle activity 
generally match well with experimentally measured EMG for 
the same motion for the major lower extremity muscles. In 
turn, our model can be used to calculate quantities such as 
muscle forces [3], muscle fiber velocities [49], joint forces [6], 
[51] and other variables that cannot be measured easily with 
an experiment but are helpful for understanding the 
biomechanics of movement. The model is freely available for 
download at https://simtk.org/home/full_body and is 
compatible with the open source software package OpenSim, 
allowing the model to be readily scaled to a variety of subjects 
and used for simulating gait and other lower extremity 
motions. 

This model improves on past models by deriving its muscle 
strength parameters from MRI data collected from healthy 
young individuals [26] rather than elderly cadavers. Our 
model does, however, derive other muscle architecture 
parameters including optimal fiber length and fiber pennation 
angle using data collected from elderly cadavers [20]. While 
studies have shown that optimal muscle fiber lengths and 
pennation angles measured in elderly cadavers may be smaller 
than the corresponding values in healthy, young adults [52], 
there is no comprehensive and complete dataset measuring 
these muscle architecture values in a cohort of young adults.  

Our model also includes a parameterization of the knee joint 
modified from previously published studies ([15], [29]) that 
better estimates both the anatomical center of rotation of the 
knee joint and the patellar force transmission mechanism 
between the femur and the tibia. This allows for estimation of 
knee joint contact forces which could not be done using 
previous models ([13], [15]). However, the calculation of joint 
contact forces in a model during a motion is sensitive to both 
the joint kinematic definition and the distribution of muscle 
forces crossing the joint in that motion ([6], [47]). Future work 
is necessary to validate both of these components. 

Some limitations of our model should be noted. Our model 
does not contain representations of all lower limb muscles, nor 
does it include representations of ligaments or other soft 
tissues. Several small muscles crossing the hip, knee, and 
ankle, were left out if information about muscle volume and/or 
muscle fiber architecture were not included in the Handsfield 
et al. and Ward et al. studies [20], [26]. Per Handsfield et al., 
the muscles that were left out account for, on average, less 
than 4% of the total lower limb muscle volume. 

Our model’s chosen musculotendon parameters represent an 
average individual based on experimental data from literature 
[20], [26]. However, there is variability in these data not 
captured in our model. Supplemental Table I enumerates the 

expected variability in our model parameters given the 
experimental data.  

There are also limitations associated with our simplified 
modeling of muscle geometry and force generation. We model 
each muscle-tendon unit as a one-dimensional path 
representing the line of action; thus, we implicitly assume that 
as a muscle-tendon unit changes length, all fibers in the 
muscle change length equally. In reality, muscle fibers within 
a muscle are distributed over a range of lengths. Thus, our 
model likely overestimates both (i) the drop-off in the active 
force-generating capacity of muscle due to the overestimation 
of fiber length change (and consequently fiber velocity); and 
(ii) the passive fiber force developed by muscles as they are 
stretched beyond optimal fiber length [53]. 

The overestimation of fiber force-length-velocity effects 
can exaggerate the loss of active force-generating capacity of 
major muscles during dynamic activities and necessitate 
scaling model muscle forces by a high specific tension. For 
example, during late stance in running when the demand on 
the gastrocnemius is greatest, gastrocnemius fibers shorten 
from approximately 75% of optimal fiber length to 55% of 
optimal fiber length at a peak shortening velocity of 0.25 
optimal fiber lengths per second [49]. These effects together 
permit the gastrocnemius, one of the largest contributors to 
forward propulsion in running [48], to produce at most 30% of 
its optimal force with maximal activation. For our model to 
produce forces sufficient to generate muscle-driven 
simulations of running, we scaled our muscle PCSAs with a 
specific tension of 60 N/cm2, which is high but within the 
range of previously reported values [44], [45]. Solving the 
muscle force distribution problem using the same optimization 
objective as CMC but ignoring any muscle-tendon dynamics 
reduces the peak gastrocnemius activation in running from 
79% to 27%. This suggests the need for a high specific tension 
can be partially attributed to simplifications in the modeling of 
muscle force generation. Other model simplifications (e.g., 
rigid body assumption [54] and joint kinematic models [55]) 
or muscle co-contraction resulting from the CMC algorithm 
[56] may also contribute to the need for a high specific 
tension, but likely play a smaller role. 

The overestimation of passive fiber force developed by 
muscles stretched beyond optimal fiber length can also lead to 
compensatory muscle activity in simulations. While the 
passive component of our muscle-generated moments in gait 
are similar to previously published data (e.g., [57]), we 
observe high passive knee extension moments generated by 
the long quadriceps fibers during peak knee flexion in the 
swing phase of walking and running (Supplemental Fig. 4). 
We see compensatory hamstring activity during swing in 
simulations not observed in experimental EMG signals 
because the hamstrings activate to produce an active knee 
flexion moment that counteracts the passive knee extension 
moment generated by the quadriceps. 

One way to correct for these effects (i.e., underestimation of 
active force and overestimation of passive force) is to better 
model the 3-dimensional structure of muscle and distribution 
of muscle fibers (e.g., using a finite-element model [12], or 
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using a much larger number of muscle-tendon units to model a 
muscle [58]), but this increases the computational cost of a 
simulation. 

Because we used a high specific tension, our model 
generates larger maximum isometric joint moments than those 
measured during maximum voluntary contraction (MVC) 
trials [59]–[67]. It should be noted, however, that humans 
generate higher muscle activations [68] and produce larger 
joint moments during dynamic activities like high-speed 
running than during MVC trials. For example, our subject 
produced a maximum ankle plantarflexion torque of 267 N-m 
while running (Fig. 4b), which is 53% higher than the 
maximum of 175 N-m reported by Sale et al. [67] during 
MVC trials and less than the 336 N-m mean peak ankle 
plantarflexion moment reported by Bezodis et al. [69] in 
similarly sized elite athletes running at roughly 10 m/s.  In the 
past, the moment generating capacity of musculoskeletal 
models has been calibrated by comparison with MVC trials 
(e.g., [15], [70]); in the future, we suggest that the moment-
generating capacity of musculoskeletal models be calibrated to 
the moments generated during dynamic maximum effort 
activities, like high speed running or maximum height 
jumping.  

Our model geometry and simulations were tested within the 
defined range of motion for the joints: 40° plantarflexion to 
30° dorsiflexion, 0° to 120° knee flexion, 30° hip extension to 
120° hip flexion, 50° hip abduction to 30° hip adduction, 40° 
hip external rotation to 40° hip internal hip rotation. We did 
not test the validity of our moment arms or our muscle force-
generating capacity outside these angle ranges. Sprinting or 
cycling may result in higher knee flexion angles, and the 
model geometry and fiber properties should be tested before 
being used in those applications. Furthermore, even within this 
range of motion, it is possible that some muscle-tendon paths 
may exhibit unexpected behavior (e.g., cross through bony 
geometry), especially at the hip joint. This is a general 
limitation of modeling complex, three-dimensional structures 
with one-dimensional muscle-tendon paths. We encourage 
users to test muscle-tendon paths within the kinematic space in 
which the model will be used in a particular study. 

V. CONCLUSION 
Muscle-driven simulations are valuable tools for 

understanding the role of muscles in healthy and pathological 
gait, and can produce useful insights for assistive device 
design [71] and surgical intervention analysis [10]. Testing a 
model in the context of its intended use is an important step in 
any study using musculoskeletal modeling. We have presented 
some testing and validation of the model, including successful 
simulations of walking and running, but comprehensive 
testing and sensitivity analysis by the community is needed 
[47]. The model is freely available for use in OpenSim for 
others to use and test. We encourage others to make 
refinements and share them with the community.  

APPENDIX 
Motion capture and EMG data for walking was collected as 

the subject walked over-ground at a self-selected walking 
speed. Marker positions of 41 retro-reflective markers were 
measured at 100 Hz using an eight-camera optical motion 
capture system (Motion Analysis Crop., Santa Rosa, CA, 
USA). We collected a static calibration trial and functional 
joint movement trials to calculate hip joint centers [72]; these 
were used in the OpenSim Scale Tool to create a scaled 
version of the generic model that matched subject 
anthropometry. Ground reaction forces and moments were 
measured at 2000 Hz using over-ground force plates (Bertec 
Corp., Columbus, OH, USA). Ground reaction forces were 
low pass filtered at 6 Hz with a 2nd order critically damped 
filter [73]. EMG signals were recorded using wireless surface 
electrodes (Tringo, Delsys Inc., Boston, MA, USA) placed on 
10 muscles: soleus, gastrocnemius lateralis, gastrocnemius 
medialis, tibialis anterior, biceps femoris long head, vastus 
medialis, vastus lateralis, rectus femoris, gluteus maximus, 
and gluteus medius. The raw EMG signal from each muscle 
was band-passed filtered between 50-500Hz, rectified, low-
pass filtered at 7.5 Hz with a 4th order Butterworth filter, and 
finally low-pass filtered at 15 Hz with a 4th order critically 
damped filter [73]. Because the subject was walking over-
ground, we did not have complete kinetic (ground reaction 
force) data for a full gait cycle from a right heel strike (RHS) 
to subsequent RHS. To simulate a full gait cycle, we used data 
from 25% of the first right gait cycle to 25% of the subsequent 
right gait cycle. We then realigned the simulation results to 
capture a full gait cycle starting at RHS. The Stanford 
University Institutional Review Board approved the 
experimental protocol and the subject gave informed consent 
to participate in the study. 

Motion capture and EMG data for running was used from a 
previously published study by Hamner et al. [48]. The authors 
in this study collected motion capture data using 54 retro-
reflective markers and collected ground reaction force data 
using a Bertec Corporation split-belt instrumented treadmill. 
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Supplemental Fig. 1. Model moment arms of the major knee and ankle flexors and extensors compared to experimental data. Model moment arms vs. knee 
flexion angle are shown for (a) rectus femoris (RecFem), vastus intermedius (VasInt), (b) vastus lateralis (VasLat), vastus medialis (VasMed), (c) biceps femoris 
long head (BFLH) and short head (BFSH), (d) semimembranosus (SM), semitendinosus (ST), (e) gracilis, sartorius, (f) gastrocnemius lateralis (GasLat) and 
medials (GasMed). Moment arms vs. ankle dorsiflexion angle are shown for (g) tibialis anterior (TibAnt) and the (h) triceps surae (GasLat, GasMed, and 
Soleus). The model moment arms (solid lines) were compared to experimentally measured moment arms by Grood et al. (shaded) [33], Buford et al. (dashed 
lines) [32], Spoor et al. (×) [34], Maganaris et al. (o) [36], and Fath et al. (�) [35]. 
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Supplemental Fig. 2. Model moment arms of major hip flexor/extensors, abductors/adductors, and internal/external rotators compared to experimental data. 
Model hip extension moment arms vs.hip flexion angle are shown for (a) gluteus maximus (GlutMax) and (b) gluteus medius (GlutMed). Model hip adduction 
moment arms vs. hip adduction angle are shown for (c) gluteus maximus and (d) gluteus medius. Model hip internal rotation moment arms vs. hip flexion angle 
are shown for (e) gluteus maximus and (f) gluteus medius. Model hip flexion/extension moment arms vs. hip flexion angle are shown for (g) psoas and the (h) 
semimembranosus (SM) and semitendinosus (ST). The model moment arms (solid lines) were compared to finite element simulated moment arms by Blemker et 
al. (shaded) [12] and experimentally measured moment arms by Nemeth et al. (x) [37], Dostal et al. (o) [38], Delp et al. (�) [39], and Arnold et al. (dash-dot) 
[40]. 
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Supplemental Fig. 3. Model passive joint moments and maximum isometric joint moments compared to experimental data. Hip flexion moments, (a) and (b), 
were computed with the knee fixed at 10° flexion. Knee flexion moments, (d) and (e), were computed with the hip fixed at 70° flexion. Ankle flexion moments, 
(f) and (g), were computed with the knee fixed at 80° flexion. In each case, unspecified joint angles were fixed at 0°. Passive joint moments for hip flexion (a), 
knee flexion (d), and ankle dorsiflexion (f) were calculated by summing the passive moments produced by all muscles crossing the respective joint. Active joint 
moments were computed for hip flexion/extension (b), hip adduction/abduction (c), knee flexion/extension (e), and ankle dorsiflexion/plantarflexion (g) by 
summing the maximum isometric moment produced by all agonist muscles and the passive moment produced by the antagonist muscles. Results are plotted 
against experimental data reported by Anderson et al. [59], Riener et al. [74], Inman et al. [60], Waters et al. [61], Cahalan et al. [62], Olson et al. [63], Murray 
et al. [64], Van Eijden et al. [65], Marsh et al. [66], and Sale et al. [67].  
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Supplemental Fig. 4. Passive and active muscle-generated joint moments for one gait cycle of walking and running. Total muscle-generated joint moments 
(dashed line) for the hip, knee, and ankle joint during muscle-driven simulations of (a) walking and (b) running were broken down into the passive (blue) and 
active (red) joint moments. Toe-off (TO) is indicated with the gray vertical line. 
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SUPPLEMENTAL TABLE I 
MUSCULOTENDON PARAMETERS WITH EXPECTED VARIATION 

Muscle Abbreviation 
Optimal force 

(N) 
(± S.D.) 

Optimal fiber 
length (cm) 

(± S.D.) 

Tendon slack 
length (cm)

 a 

(± S.D.) 

Pennation 
angle (°) 
(± S.D.) 

Adductor brevis addbrev 626 (130) 10.3 (1.4) 3.5* (1.7) 6.6 (3.4) 
Adductor longus addlong 917 (220) 10.8 (2.0) 13.2 (2.6) 7.9 (3.9) 
Adductor magnusbe       
     Adductor magnus (distal) addmagDist 597 (131) 17.7 (3.4) 8.7* (3.5) 11.2 (5.5) 
     Adductor magnus (ischial) addmagIsch 597 (131) 15.6 (3.0) 21.6 (3.2) 9.6 (4.7) 
     Adductor magnus (middle) addmagMid 597 (131) 13.8 (2.6) 4.7* (2.6) 11.9 (5.8) 
     Adductor magnus (proximal) addmagProx 597 (131) 10.6 (2.0) 4.0* (2.2) 17.8 (8.7) 
Biceps femoris long head bflh 1313 (402) 9.8 (2.6) 32.5 (2.8) 10.1 (4.9) 
Biceps femoris short head bfsh 557 (158) 11.0 (2.1) 10.6* (2.6) 15.1 (4.5) 
Extensor digitorum longusce  edl 603 (115) 6.9 (1.1) 36.9 (1.5) 12.5 (3.4) 
Extensor hallucis longusce

 ehl 286 (51) 7.5 (1.1) 32.7 (1.4) 11.3 (2.7) 
Flexor digitorum longus fdl 423 (148) 4.5 (1.1) 37.9 (1.1) 12.9 (4.6) 
Flexor hallucis longus fhl 908 (273) 5.3 (1.3) 35.4 (1.3) 14.8 (4.3) 
Gastrocnemius lateral head gaslat 1575 (404) 5.9 (1.0) 37.6 (1.1) 12.0 (3.3) 
Gastrocnemius medial head gasmed 3116 (727) 5.1 (1.0) 39.9 (1.1) 9.5 (4.3) 
Gluteus maximusbe       
     Gluteus maximus (superior) glmax1 984 (181) 14.7 (2.4) 4.9* (4.0) 20.3 (24.3) 
     Gluteus maximus (middle) glmax2 1406 (260) 15.7 (2.6) 6.8* (4.4) 21.0 (25.3) 
     Gluteus maximus (inferior) glmax3 948 (175) 16.7 (2.7) 7.0* (4.9) 21.9 (26.3) 
Gluteus mediusbe       
     Gluteus medius (anterior) glmed1 1093 (279) 7.3 (1.6) 5.6* (1.7) 18.1 (15.2) 
     Gluteus medius (middle) glmed2 765 (195) 7.3 (1.6) 6.5* (1.7) 18.1 (15.2) 
     Gluteus medius (posterior) glmed3 871 (222) 7.3 (1.6) 4.5* (1.7) 18.1 (15.2) 
Gluteus minimusbef

      
     Gluteus minimus (anterior) glmin1 374 (48) 6.8 (n/a) 1.6* (n/a) 10.0 (n/a) 
     Gluteus minimus (middle) glmin2 395 (59) 5.6 (n/a) 2.6* (n/a) 0.0 (n/a) 
     Gluteus minimus (posterior) glmin3 447 (86) 3.8 (n/a) 5.1 (n/a) 1.0 (n/a) 
Gracilis grac 281 (70) 22.8 (4.4) 17.2* (5.5) 9.9 (3.1) 
Iliacus iliacus 1021 (219) 10.7 (1.9) 9.6* (2.0) 16.0 (6.1) 
Peroneus brevisde perbrev 521 (109) 4.5 (0.7) 14.8 (0.8) 11.8 (3.2) 
Peroneus longusde perlong 1115 (220) 5.1 (0.6) 33.2 (0.8) 14.2 (5.3) 
Piriformisf piri 1030 (287) 2.6 (n/a) 11.5 (n/a) 10.0 (n/a) 
Psoas psoas 1427 (306) 11.7 (1.7) 10.0* (2.2) 12.3 (3.9) 
Rectus femoris recfem 2192 (473) 7.6 (1.3) 44.8 (1.4) 12.4 (3.5) 
Sartorius sart 249 (43) 40.3 (4.6) 12.4* (5.9) 1.5 (2.1) 
Semimembranosus semimem 2201 (645) 6.9 (1.8) 34.8 (2.1) 14.6 (3.6) 
Semitendinosus semiten 591 (148) 19.3 (4.1) 24.7 (5.2) 13.8 (5.4) 
Soleus soleus 6195 (1606) 4.4 (1.0) 27.7 (1.0) 21.9 (8.0) 
Tensor fascia lataef tfl 411 (125) 9.5 (n/a) 44.9 (n/a) 3.0 (n/a) 
Tibialis anterior tibant 1227 (205) 6.8 (0.8) 24.0 (1.0) 11.2 (3.7) 
Tibialis posterior tibpost 1730 (358) 3.8 (0.5) 28.1 (0.7) 13.0 (4.2) 
Vastus intermedius vasint 1697 (437) 9.9 (2.0) 20.2 (2.3) 3.6 (3.7) 
Vastus lateralis vaslat 5149 (1025) 9.9 (1.8) 22.1 (1.9) 14.5 (5.7) 
Vastus medialis vasmed 2748 (701) 9.7 (2.3) 20.0 (2.8) 24.2 (7.6) 

Musculotendon parameters. Muscle physiological cross sectional areas (PCSAs) were calculated from muscle volumes measured by Handsfield et al. [26] in 
healthy, young subjects. Optimal fiber lengths were measured by Ward et al. [20] in cadaver subjects. Pennation angle at optimal fiber length was calculated 
using pennation angle measurements in cadavers by Ward et al. and adjusted for fiber length using the constant-volume assumption made by Millard et al. 
Tendon slack length was set in the model to match normalized fiber length measurements reported by Ward et al.  

aTendons were modeled as rigid when the tendon slack length was less than the muscle optimal fiber length. Rigid tendons are indicated with a (*). 
bMuscle volume was only available for the whole muscle. Total muscle volume for each muscle was divided equally between the muscle-tendon units using 

the same volume distribution as in the model by Arnold et al. [15]. 
cMuscle volume was only available for extensor digitorum longus, extensor hallucis longus, and peroneus tertius combined. Peroneus tertius was not included 

in our model. The total muscle volume was divided between extensor digitorum longus and extensor hallucis longus using the volume proportions used by 
Arnold et al. [15]. 

dMuscle volume was only available for peroneus brevis and peroneus longus combined. The total muscle volume was divided between the two using the 
volume proportions used by Arnold et al. [15]. 

eMean and standard deviation of experimental muscle volume fraction, optimal fiber length, and/or pennation angle were not reported separately for each 
muscle-tendon compartment (see notes b,c,d). To do the variability analysis described below, standard deviations of relevant experimental measures were 
assigned to each muscle-tendon compartment to maintain the coefficient of variation reported for the whole muscle [20], [26]. 

fExperimental variation in fiber length and pennation angle were not reported by Ward et al. [20]. Variation in optimal fiber length, tendon slack length, and 
pennation angle at optimal fiber length was not computed. Variation in optimal force was computed only with respect to variation in muscle volume. 
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Notes associated with Supplemental Table I. Expected variation in muscle optimal force (C"*), optimal fiber length ()"*), tendon 
slack length ()Z,), and pennation angle at optimal fiber length (!") was computed based on the reported variation in optimal fiber 
length, pennation angle (!) and normalized fiber length ()*) at a specified pose [20], and muscle volume fraction (B*) [26]. 
 
Optimal fiber force: 

C"* = D"*
B*+,",-.

)"*
 

 
Variance was computed based on a first-order Taylor expansion as shown below 

DaIF
T ≈ cC"*

cB* P"*
DEF

T
+	 cC"

*

c)"* P"*
D.IF

T
 

where 
• DaIF is the standard deviation in optimal fiber force, 
• DEF is the standard deviation in muscle volume fraction reported by Handsfield et al. [26], and 
• D.IF is the standard deviation in optimal fiber length reported by Ward et al. [20]. 

 
Optimal fiber length: 
Standard deviation of this parameter was taken directly from Ward et al. [20]. 
 
Tendon slack length: 

)Z, = e()"*, )*, !") 
Standard deviation of this parameter was computed using a Monte-Carlo simulations with 10,000 trials per muscle-tendon unit 
with 	)"*	~	h(i.IF, D.IF

T ), )*	~	h(i.F, D.FT ), and !"	~	h(ijI, DjIT ), where 
• i.IF, i.F, ijI are the mean values for these parameters used in the model,  
• D.IF is the standard deviation in optimal fiber length reported by Ward et al. [20],  
• D.F is the standard deviation in the passive normalized fiber length at 7° hip flexion, 2° hip abduction, 0° knee flexion, 

and 20° plantarflexion (see text, Methods B) reported by Ward et al. [20], and 
• DjI is the standard deviation in pennation angle at optimal fiber length, computed below. 

 
Pennation angle at optimal fiber length: 

!" = sin'( )* sin !  
Variance was computed based on a first-order Taylor expansion as shown below 

DjI
T ≈ c!"

c)* P"*
D.F

T
+ 	 c!"c! P"*

Dj
T
 

where 
• DjI is the standard deviation in pennation angle at optimal fiber length, 
• Dj is the standard deviation in pennation angle at the normalized fiber length reported by Ward et al. [20], and 
• D.F is as defined earlier [20]. 


