
 1 Copyright © 2013 by ASME 

Proceedings of the ASME 2013 International Design Engineering Technical Conferences &  
Computers and Information in Engineering Conference 

IDETC/CIE 2013 
August 4-7, 2013, Portland, Oregon, USA 

DETC2013-13633 

WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN 
BIOMECHANICAL MODELS USING GENERALIZED COORDINATES 

 

 

 

Michael A. Sherman* 
Department of Bioengineering 

Stanford University 
Stanford, California 94305 
msherman@stanford.edu  

Ajay Seth 
Department of Bioengineering 

Stanford University 
Stanford, California 94305 

aseth@stanford.edu 

Scott L. Delp 
Departments of Bioengineering 

and Mechanical Engineering 
Stanford University 

Stanford, California 94305 
delp@stanford.edu 

 

 

ABSTRACT 
Biomechanics researchers often use multibody models to 

represent biological systems. However, the mapping from 

biology to mechanics and back can be problematic. OpenSim is 

a popular open source tool used for this purpose, mapping 

between biological specifications and an underlying 

generalized coordinate multibody system called Simbody. One 

quantity of interest to biomechanical researchers and clinicians 

is “muscle moment arm,” a measure of the effectiveness of a 

muscle at contributing to a particular motion over a range of 

configurations. OpenSim can automatically calculate these 

quantities for any muscle once a model has been built. For 

simple cases, this calculation is the same as the conventional 

moment arm calculation in mechanical engineering. But a 

muscle may span several joints (e.g., wrist, neck, back) and 

may follow a convoluted path over various curved surfaces. A 

biological joint may require several bodies or even a 

mechanism to accurately represent in the multibody model 

(e.g., knee, shoulder). In these situations we need a careful 

definition of muscle moment arm that is analogous to the 

mechanical engineering concept, yet generalized to be of use to 

biomedical researchers. Here we present some biomechanical 

modeling challenges and how they are resolved in OpenSim 

and Simbody to yield biologically meaningful muscle moment 

arms.  

INTRODUCTION 
Biological systems are much more complex than 

engineered systems at similar scales. To reduce this complexity 

when investigating biomechanical aspects of vertebrates (e.g., 

gait disorders in humans [1–3], the mechanics of human 
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running [4, 5], or the maximum speed of a Tyrannosaurus 

[6, 7]), a practical and widely used approach is to model them 

as multibody systems, with rigid bodies for bones and 

physiologically-relevant generalized coordinates assigned to 

represent joint mobility. Biomechanical researchers then study 

the multibody system, using well-understood principles of 

mechanics to obtain a deeper understanding of the biological 

system—for example, determining which muscles contribute 

most to mass center acceleration during running [5]. 

Unfortunately, neither the mapping from biology to a useful 

multibody model nor the extraction of clinically relevant results 

from a multibody simulation is straightforward. For example, 

biologists have a well-developed concept of “joint” that does 

not map neatly to the body-to-body interconnections in a 

multibody system. In practice we encounter problems of 

definition, modeling, implementation, and interpretation.  

In this paper we illustrate these issues by closely 

examining a single aspect of biomechanical modeling: how to 

determine a meaningful “moment arm” for muscles. 

Biomechanical researchers and clinicians are keenly interested 

in this quantity, by which they mean roughly the 

“effectiveness” of a particular muscle at generating a particular 

motion of interest (for example, knee flexion during gait [8]), 

with application to surgical and rehabilitation planning [9]. But 

transferring the mechanical concept of moment arm—the 

distance from force line of action to center of rotation—to 

biology is deceptively difficult. What is the “line of action” for 

a muscle that follows a curved, evolving path over the skeleton 

and connective tissue [10]? Where is the “center of rotation” 

when a muscle spans several joints, or when a single biological 

joint like a knee or shoulder requires a mechanism to represent 

accurately [11, 12]? How is the moment arm usefully defined 
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Figure 1. AN EASY CASE: MOMENT ARM IS DISTANCE 
FROM LINE OF ACTION TO JOINT CENTER. 

 

when the joints a muscle spans exhibit coupled rotational and 

translational motion, as biological joints commonly do [13]? 

We have developed two open source software packages 

that together resolve these issues: OpenSim [14], an application 

biomechanical researchers and clinicians use to model and 

study actively controlled, muscle-actuated biological systems in 

motion, and Simbody [15], a high-performance generalized 

coordinate multibody library built specifically to support the 

unique features of biologically-derived multibody models.  

This paper is organized as follows. First, we present issues 

that arise in biomechanical multibody models that complicate 

muscle moment arm calculation. Then we discuss how we map 

from the biologist’s viewpoint to the rigorous problem 

definition needed for multibody treatment. Given the definition, 

we then compare several methods for calculating moment arm 

using available multibody operators, and present the precise 

definition and calculation used in OpenSim. Finally, we argue 

that the chosen method satisfies both the rigorous definition and 

the expectations of biomechanical researchers and clinicians. 

NOMENCLATURE 
Our terminology here follows Ref. [13] to avoid ambiguity 

due to conflicting uses of the same terms in biology and 

multibody dynamics. Spatial vectors following Jain [16] are 

used to simplify notation. 

 

joint 

biologically-relevant locus of skeletal articulation; may 

involve several bones and connective material 

generalized (coordinate, speed, force)  

arbitrary basis for compact representation of positions, 

velocities, and forces in a multibody system 

spatial (position, velocity, force) 

quantities that combine rotational and translational 

elements to simplify notation; spatial position is also called 

“pose”  

mobilizer 

topological connection between two bodies that provides 

mobility (1–6 generalized degrees of freedom) for the child 

body relative to its parent in the multibody tree, 

parameterized with generalized coordinates, speeds, and 

forces; some authors use “hinge” 

mobilities 

mobilizer-provided degrees of freedom whose rate of 

change is directly represented by particular generalized 

speeds and at which the corresponding generalized forces 

act 

Symbols 
A,B labels for bodies of the multibody system 

n number of mobilities  

u vector of n generalized speeds 

f vector of n generalized forces 

q vector of nq ≥ n generalized coordinates 

l length of musculotendon path 

s scalar tension along musculotendon path 

r moment arm (units of length) 

F
B
 spatial force on body B (a wrench; that is, combined 

torque and force vectors) 

V
B
 spatial velocity of body B (angular, linear velocity) 

F set of spatial forces, one per body of interest, arranged 

as a stacked vector of spatial forces 

J Jacobian matrix that maps between spatial and 

generalized speeds and forces 

T a muscle’s force transmission matrix mapping tension 

to spatial forces applied to bodies 

θ an angular quantity of interest 

rθ moment arm about a particular angle of interest 

τθ effective torque about a particular angle of interest 

Cθ coupling matrix relating generalized speeds to    

 

For muscle moment arm calculations, we always work 

with one muscle at a time. To avoid unnecessarily complicated 

notation, it is to be understood here that the symbols refer to the 

subset of the multibody model (bodies and mobilities) that 

affects the muscle of interest.  

Symbols used only once are introduced where they appear. 

BIOMECHANICAL MODELING ISSUES 
Moment arm is such a simple concept in mechanics that it 

is easy to assume it should be simple in biomechanics as well. 

Figure 1 (adapted from Ref. [17]) shows a straightforward case. 

The brachialis (BRA) and brachioradialis (BRD) muscles are 

modeled here as straight-line musculotendon actuators; the 

elbow, by a revolute joint with a well-defined joint center (JC). 

The moment arm r is determined using the conventional 

mechanics definition given in the introduction. 

However, a simple mechanism-like approximation of a 

biological system, such as that of Figure 1, is often inadequate 

for drawing clinically meaningful conclusions. Figure 2 (left) is 

an anatomical drawing from Ref. [18] of a finger model 
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Figure 2: HARDER CASES: TENDONS CROSS 
MULTIPLE JOINTS, SLIDE OVER OBSTACLES. 

 

showing the curved paths of three tendons, each crossing two 

joints. Figure 2 (right) shows an OpenSim model from Ref. 

[19] of the lower limb including path points and geometric 

obstacles used to approximate a multiarticular musculotendon 

path, and including a moving patella constrained to track knee 

rotation. These are representative of the more general situations 

for which “muscle moment arm” must be defined and 

calculated. In each case, a muscle generates a scalar tension 

force s along its path; the moment arm r (with units of length) 

of that muscle about a “joint of interest” should characterize its 

effectiveness at generating a torque τ about that joint, such that 

τ=rs. Defining these quantities is made difficult by the fact that 

the “joint of interest” may not be any of the individual 

connections between bones, but can be a measurable quantity 

that is internally a composition of several joints. For example, 

Gonzalez et al. [20] modeled wrist flexion-extension 

kinematics as two coupled revolute joints with the total flexion 

angle divided evenly between the two. Then the moment arm 

measures the effectiveness of the muscle at producing total 

wrist flexion.  

As a further implementation difficulty, consider that the 

desirable use of generalized (relative) coordinates in 

biomechanics may require coordinate choices that reflect the 

coupled rotations and translations generated by the complex 

geometry of joints [13]. This can lead to generalized 

coordinates and generalized forces that cannot be interpreted 

directly in any familiar units, such as angles, lengths, forces, or 

moments. For example, a model may define a generalized 

coordinate that ranges from 0 to 1 as the joint it controls 

performs a coordinated rotation and translation in three 

dimensions.  

 Muscle modeling 
While real muscles are distributed over a volume, 

biomechanists commonly model them as one or more thin, 

curved musculotendon (MT) actuators following the centroid of 

the muscle volume, comprising an active muscle fiber and 

passive tendon in series [21]. An MT actuator is considered to 

connect an “origin” point fixed on one body to an “insertion” 

point fixed on a distal body, via a minimum-length curved path 

possibly passing (frictionlessly) through “via points” and over 

“wrapping surfaces” fixed to these or other bodies. Such bodies 

may be located arbitrarily within the multibody connectivity 

graph; they do not necessarily lie along a common branch. For 

example, the model described in Ref. [11] has a patella with 

multiple MT attachments connected to the tibia but constrained 

to be coordinated with the knee angle. A neck “joint” may 

provide just a few degrees of freedom, but involve the 

coordinated motion of a half dozen vertebrae with muscles that 

cross all of them and slide over geometric obstacles. Figure 3 

shows a neck model [22] reproduced with permission from Ref. 

[23]. 

Moving muscle points. One OpenSim modeling 

feature, “moving muscle points” (MMPs) has implications for 

moment arm calculation. These are path via points whose 

locations are specified functions of the configuration, typically 

using spline curves keyed to generalized coordinate values and 

fit through empirically-obtained data, such as the MRI images 

of the spine used in Ref. [24]. These can produce excellent 

kinematic models, but because no physical mechanism is 

provided to drive the motion of these points (which are under 

load from the muscle), unaccounted work would be done at 

those points in kinetic and dynamic studies. However, MMPs 

can be used as a modeling step to determine the shapes of 

workless wrapping surfaces to be used in those studies. 

While OpenSim can calculate moment arms for models 

with MMPs, results will differ from empirical measurements 

made on physical systems so must be used cautiously. This is 

discussed further below. 

Reference model 
For the remainder of this paper, we will use the multibody 

model shown in Figure 4 to clarify the calculation of moment 

arms. This simplified model captures all the issues of relevance 

to moment arm calculation that arise in multibody models 

 
 

Figure 3. VASAVADA NECK MODEL. 
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produced by OpenSim users. There is a well-defined angle of 

interest θ that relates the orientation of body B to that of body 

A, and there is a particular MT actuator of path length l with 

origin point on A and insertion point on one of the intermediate 

bodies. We would like to know the moment arm rθ  of this MT 

actuator with respect to θ, over a range of values for θ. 

As shown, the angle of interest θ is the sum of four coupled 

angles: i i   , i=1..4. Other coupled coordinates θ5,6 are 

present and affect l via a frictionless wrap surface, but are not 

part of the definition of θ (a patella is modeled similarly, with θ 

the knee angle). Note that the angles θi are not necessarily the 

same as the generalized coordinates q, which can have any 

units. However, there are six coupler constraints (discussed 

below) in this model so that there is just a single remaining 

degree of freedom between A and B for purposes of moment 

arm calculation. Any other unconstrained mobilities are locked 

if necessary so that l=l(θ). 

Although only one wrap surface is shown, there can be 

many more and the muscle path is expected to follow a 

smoothly-evolving trajectory over them, which requires the 

solution of a nonlinear computational geometry problem for 

each configuration. This calculation is generally solved 

approximately, leading to numerical variability in the calculated 

path length l, which is problematic for estimation of the path 

length time derivative .l  Consequently, we will be interested in 

moment arm calculations that can be performed without 

explicit calculation of .l   

DEFINITION OF MUSCLE MOMENT ARM 
We would like a clinically-useful definition of muscle 

moment arm that can be used for biomechanical models such as 

the ones described above. Biomechanists view muscle moment 

arm r as an instantaneous measure of the effectiveness with 

which the contraction force of a given muscle can generate a 

torque at a “joint of interest,” while in a given configuration q. 

The result is expected to be a scalar quantity with units of 

length, and to depend only on geometry (not material or mass 

properties). That means the definition must involve only 

kinematic relationships so that r=r(q). To be useful, calculation 

of r must also be fast since biomechanists expect to obtain plots 

of moment arms versus configuration for numerous muscles as 

an incidental output of simulations involving extensive motion.   

Given the requirement that a moment arm depends only on 

some joint-associated kinematic quantity θ, we can designate 

the muscle’s moment arm with respect to that quantity as r , 

and define it as follows: 

 r
s





  (1) 

where   is a scalar representing the “effective torque” acting 

about θ that is due to the scalar tension force  s>0 generated by 

muscle activation. Following Lieber [9], we take Eqn. (1) as the 

fundamental definition of muscle moment arm. Determination 

of effective torque will be discussed below. 

In general, the joint of interest may reflect the complex 

combined effect of several internal components; we require that 

there is a well-defined angular quantity θ determined 

kinematically as θ=θ(q) associated with the joint, as illustrated 

in Figure 4. Therefore, a muscle’s moment arm is defined only 

for angles θ that determine muscle path length l kinematically. 

That is, we expect a small displacement dθ to produce a small 

length change dl that depends only on q, not on velocities, 

forces, or masses. All generalized coordinates q that can affect 

θ are thus assumed to be coupled; any that are not coupled 

explicitly by a constraint will be held constant during the 

moment arm calculation (they are “coupled” with a coupling 

factor α=0).  

When calculating moment arm, we expect that all 

constraints affecting the relevant kinematics are workless. This 

implies that wrapping surfaces and via points are frictionless, 

and that all motions that can affect the muscle or joint are 

enforced using physically-valid, time-independent constraint 

elements. Provided that any motion of our model satisfies these 

constraints, work equivalence [25] allows us to conclude that 

 s dl d    (2) 

where l=l(q) is the musculotendon path length along which 

tension s is acting. Combining (2) with the moment arm 

definition (1) we have 

 
dl

r
d




   (3) 

Equation (3) provides a convenient method for calculating 

moment arm, especially in a laboratory setting [18, 26] where it 

is referred to as the “tendon excursion method,” but it must be 

emphasized that this is not a definition but a consequence of the 

assumption that all constraints are workless. Definition (1) is 

more general; however, in this paper we will primarily address 

moment arm calculations for which the assumption behind Eqn. 

(3) holds. As noted above, models containing MMPs violate 

this assumption. For those models, calculations based directly 

on Eqn. (1) can still be performed, but we caution that they 

 
 

Figure 4. IDEALIZED BIOMECHANICAL MULTIBODY 

MODEL. 
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cannot be expected to match empirical results measured with 

methods based on Eqn. (3).   

Note that all the quantities we used in the definition above 

are ordinary physical quantities: angles, lengths, forces, and 

torques. In practice, biomechanists build multibody models 

using generalized coordinates and corresponding generalized 

forces. It is worth emphasizing again that such quantities may 

truly be generalized—they do not necessarily have physical 

units. Therefore, careful conversion to physical units is 

essential to use generalized coordinates to calculate physically-

meaningful quantities like moment arm. We will address this 

conversion below.  

Specification of a “joint of interest” 
An OpenSim user requesting a moment arm calculation 

specifies a muscle, and chooses one of the available angular 

quantities that may be affected by that muscle. OpenSim 3.0 

offers only a generalized coordinate subset for this purpose, so 

θ is always one of the q’s; however, that is not a necessary 

restriction for the methods to be presented. Currently, when the 

angle of interest is the sum of several coupled rotations as in 

Figure 4, the coordinate associated with one of them (called the 

independent coordinate) is scaled so that it reads as the total 

angle rather than just the angle it controls directly. Muscles 

crossing wrist, ankle, neck, and back may be modeled with a 

single independent coordinate measuring the total angle, while 

several dependent coordinates are coupled to it.  Coupler 

constraints are added separately to enforce the desired 

cooperative motion of the dependent coordinates. The 

algorithm below does not require this approach, but there must 

be some way to calculate θ from the q’s and   from the ’sq .  

Note that a muscle path may cross several independent 

coordinates, such as a hip and knee angle as in Figure 2. When 

moment arm is calculated for one of those coordinates, the 

others are held rigid (meaning again that it is seen as coupled 

temporarily, with a coupling factor of 0).  

Modeling assumptions 
To calculate muscle moment arms as defined above, using 

the methods to be described below, certain assumptions about 

properties of the biomechanical models must hold. These are 

implied by the discussion above but are made explicit here. 

Assumption 1: kinematically-determined path geometry. 

Although an MT path includes both muscle fiber and tendon 

segments whose relative lengths vary dynamically, we assume 

that the total length l for a given MT path is just a kinematic 

quantity ( )l q  (typically representing the shortest path from 

origin to insertion) that can be calculated once the poses of all 

the bodies are known via specification of the generalized 

coordinates q. So for any given MT path we have 

 ( )l l q   (4) 

This implies that the path is massless and frictionless. 

Assumption 2: uniform tension and linear tension-to-

force transmission. Force generation by an MT actuator is 

completely characterized by a scalar tension 0s   acting 

uniformly along the path, such that the matrix of spatial forces 

F applied by the muscle in a given configuration is just a linear 

function of s: 

 ( ; ) ( )F q s T q s  (5) 

where T is the muscle’s instantaneous “force transmission 

matrix,” a stacked vector of per-body spatial vectors. We expect 

that, assuming a particular configuration q, a muscle element 

can efficiently compute F given s; T is not necessarily 

calculated explicitly. 

Assumption 3: physical modeling of MT path kinetics. 

Any motion of the points at which an MT path applies forces 

must be modeled in a physically realizable manner by workless 

constraints or contact with frictionless geometric obstacles. 

Widely used “coupler constraints” (which constrain the relative 

motion of a set of generalized coordinates using gear-like 

transmission elements) are workless and enable moment arm 

calculations involving composite joints. This assumption can be 

relaxed to permit moment arm calculation for models 

containing MMPs, although there are some important caveats 

we will discuss. 

THE MULTIBODY SYSTEM 
A few properties of Simbody’s generalized coordinate 

multibody systems are necessary for the derivation below and 

are summarized here. 

Generalized speeds u are not always the same as time 

derivatives q  of the generalized coordinates q, although they 

are closely related. This distinction will be important below 

because generalized forces f are dual to generalized speeds, but 

not to generalized coordinate derivatives. In Simbody, the 

relationship between generalized speeds and generalized 

coordinate derivatives is given by a block diagonal matrix N(q): 

 
dq

q Nu
dt

   (6) 

 There is a dual relationship between forces and velocities 

when measured in the same basis. The contribution of 

generalized speed ui to body B’s spatial velocity BV (at B’s 

origin) is: 

 B B

i i iV J u   (7) 

where Jacobian B B ( )i iJ J q , and 
B B

iV V . (This holds in 

Simbody’s formulation even with prescribed motion, which 

always enters through prescribed generalized coordinates and 

speeds.) The dual of this relationship relates a spatial force 
BF  

applied at body B’s origin to its contribution to the generalized 

force fi acting at mobility ui: 
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 B B( )T

i if J F   (8) 

The equations of motion for the multibody model 

representing our system at the acceleration level are 

applied inertial

TMu G f f     (9) 

Gu b   (10) 

Here fapplied is the generalized force equivalent of all applied 

forces including gravity, and finertial is the generalized force 

equivalent of the gyroscopic and Coriolis forces. λ is the vector 

of Lagrange multipliers needed to enforce the acceleration-level 

constraints in Eqn. (10), which arise from differentiation of the 

position (holonomic) and velocity (nonholonomic) constraints. 

G=G(q) is the constraint Jacobian and b contains time and 

velocity dependence, if any. M is the generalized mass matrix 

(not actually formed in an O(n) multibody code). Simbody can 

efficiently calculate u and  given the state (q and u) and the 

applied forces. Alternatively, given the state, ,u and , Simbody 

can efficiently determine the applied generalized forces using 

inverse dynamics. 

“Coupler constraints” are holonomic constraints c(q)=0 

that constrain a subset of generalized coordinates directly, such 

as 5 8 / 2q q  or even 
2

1 2 32 3 0.q q q    Sets of these 

constraints are commonly used in biomechanical models to 

introduce empirically-observed coordination across composite 

joints without modeling the complex biological components 

that are responsible for that coordination. This modeling 

strategy removes unwanted degrees of freedom, one per coupler 

constraint. Twice differentiating couplers gives constraints as in 

Eqn. (10), enforced by joint torques generated by workless 

transmission elements acting among the related coordinates.  

METHODS TO CALCULATE MOMENT ARM 
Starting with the definition in Eqn. (1), there are a variety 

of ways to calculate moment arm differing in precision, 

implementation difficulty, and conceptual difficulty.  

Perturbation method 

We can calculate r dl d   directly by finite 

differencing. That is, we can make a small perturbation Δθ, 

satisfy all position constraints, update geometric calculations 

including recalculation of the MT path over obstacles, and 

measure the resulting change  Δl. The advantage of this method 

is that it directly implements Eqn. (3), and it is conceptually 

very simple. It is also the method of choice for measuring 

moment arm in the laboratory, because angular perturbations of 

cadavers are practical to perform [27, 28]. However, it has 

several drawbacks for computation: it produces an approximate 

answer, and it involves linearization difficulties due to the 

complex path geometry and the need to ensure satisfaction of 

the nonlinear holonomic constraints. Also, because this 

calculation is done at the position level, it includes only 

holonomic constraints and cannot account for nonholonomic 

constraints such as rolling (if those are present in the model). 

As noted above, a model containing MMPs does not satisfy 

the workless constraint assumption behind Eqn. (3), so the 

perturbation method cannot produce correct moment arms for 

these models.   

Path velocity method 
An easier and exact computation is available using 

velocities, since we have 

 
/

/

dl dl dt l
r

d d dt


  
     (11) 

That is, if we can calculate ( )l   then we need only enforce 

1   (for example), satisfy all velocity constraints, then obtain

(1)r l  . This is probably the best way to calculate moment 

arm for systems that satisfy the assumptions of Eqn. (3), 

provided the operator ( )l   is available. Unfortunately, as we 

have discussed it can be difficult to calculate ;l consequently, 

we would like to find an alternative method that does not 

depend on that calculation.  

Partial velocity method 
By Assumption 1 above, we have l=l(q) so 

 i

i i

qdl l
l Pq PNu

dt q t


  

 
   (12) 

with the last equality due to Eqn. (6). P(q) is a 1xnq “partial 

velocity matrix” [29] whose i
th
 entry is the scalar i ip l q   . 

Because we assumed kinematic coupling between the 

generalized coordinates and θ,    determines the corresponding 

generalized speeds. So we can write 

 u C   (13) 

for some coupling matrix Cθ(q) (an nx1 column matrix with 

entries ci), where q, u and Cθ are understood to involve just the 

path of a given MT. Then from Eqn. (12) we have 

 l PNC   (14) 

Next, comparing (14) with (11), we find that 

 r PNC    (15) 

If we had an explicit representation of P, this would be a good 

way to calculate r . However, this would imply that we could 

easily calculate l Pq , contradicting our earlier assumption 

that l is not easily obtained. In models where P can be obtained, 

this is a practical method for computing moment arm; for 

example, see Ref. [30].  

Since generalized forces are dual to generalized speeds, we 

will now look at how to use forces instead of velocities to 

calculate r .  
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Generalized force method 
Simbody can map body spatial forces F to generalized 

forces f via an operator that calculates 

 Tf J F   (16) 

in O(n) time, where J=J(q) is the system Jacobian that maps 

generalized speeds to the body spatial velocities they produce. J 

is logically assembled from the body Jacobians in Eqn. (7), 

although it is not formed explicitly by Simbody. Eqn. (5) tells 

us how to calculate F from a given muscle tension scalar s, 

using the muscle’s force transmission matrix T. Substituting 

Eqn. (5) into (16) gives 

 ( ) Tf s J T s   (17) 

The nx1 column matrix TJ T  maps muscle tension to 

generalized force. Because of the necessary power equivalence
T

f u sl , the dual to (17) that maps generalized speeds to l is 

 ( ) Tl u T J u   (18) 

(compare with Eqns. (7) and (8)). Combining Eqns. (11), (13), 

(17), and (18) gives 

 
TT f Cl f u

r
ss




 
     (19) 

This provides the algorithm we need for calculating moment 

arm without calculating l  directly: 

1. Determine the coupling matrix Cθ for the angular 

quantity of interest θ (see below). 

2. Apply unit tension s=s0 to the muscle of interest and 

map to body spatial forces F(s) using the muscle’s 

force transmission Eqn. (5). 

3. Use the Simbody operator defined by Eqn. (16) to map 

body spatial forces F to generalized forces f . 

4. Use Eqn. (19) to compute 
0/Tr f C s  . 

The above algorithm is the method that is used in OpenSim 3.0 

to calculate muscle moment arm. 

 

Calculating the coupling matrix Cθ. To calculate Cθ, 

we prescribe the rate of change for the angular quantity of 

interest to any non-zero value: 0  . We then use Simbody’s 

velocity solver to find the compatible set of generalized speeds 

u such that all velocity-level constraints are satisfied and 

0( )u  . Now each 0i iu c , so 0/i ic u   and we have 

determined 0/C u  . 

Calculating effective torque. We want to show that 

our moment arm calculation is consistent with the definition in 

Eqn. (1) and thus provides a biologically-relevant result. This 

requires a method to map from generalized forces f(s) provided 

by the multibody system via Eqn. (17) to the physical torque 

 used in the definition.  

Since all constraints are presumed to be non-working, the 

total power p from our reference system in Figure 4 should be 

the sum of power contributions at the θk angles that are coupled 

to θ. That is, 

 
k k k kp             (20) 

 k k      (21) 

Equation (21) provides the algorithm we need to compute 

the effective torque   from the individual joint torques
k . 

There remains one unresolved issue: in a multibody model 

using generalized coordinates, we will calculate generalized 

forces, which are not necessarily torques. Also, the angles
k

and angular rates 
k are not necessarily the same as the 

corresponding generalized coordinates qk and speeds uk, since 

OpenSim permits, and biomechanists commonly exploit, 

arbitrary scaling of generalized coordinates.  

Denote the scaling of the k
th
 generalized speed wk such that

k k kw u  . Then we must have /k k kf w   because k kf u  and 

k k   measure the same physically-meaningful power. So now 

we can use Eqn. (17) to find f(s) and calculate 

k k kf w  and compare it with r s . 

However, from the definition of Cθ in Eqn. (13) and the 

definitions of kw  and k  above, we see that

/ / /k k k k k k k k ku c w w c w         . That permits 

simplification of our calculation of   
to 

 
T

k kc f f C      (22) 

The generalized coordinate weights wk drop out of the 

calculation so do not affect the result. Now substitute Eqn. (22) 

into (19) to see that the generalized force method for 

calculating moment arm directly satisfies the definition in Eqn. 

(1). Since the definition does not rely on the workless constraint 

assumption, this method can be used even in the presence of 

MMPs in the model but results will be inconsistent with the 

tendon excursion method, which does not measure effective 

torque directly. 

OpenSim 3.0 uses this method of calculating effective 

torques to confirm that its reported muscle moment arms have 

the meaning that biomechanical researchers seek: they 

characterize the effectiveness with which MT actuators can 

generate torques of interest.  

CONCLUSION 
We have presented challenges in mapping between 

biomechanical systems and multibody models in order to 

rigorously define a muscle moment arm that has a clear and 
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unambiguous biomechanical meaning and can be correctly 

implemented and tested. Resolution of these issues required 

close communication between researchers and dynamicists, and 

patience in overcoming differences in terminology and 

expertise. This led to the generalized force method presented 

above which is fast, uses easily-obtained quantities, and 

delivers useful results. 

We have embodied this work in our open source OpenSim 

and Simbody codes, which are widely used in biomechanics 

research. We encourage other dynamicists and biomechanists to 

engage in this ongoing collaboration, and to explore and 

enhance these community resources located at 

https://simtk.org/home/opensim and 

https://simtk.org/home/simbody.  
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