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Abstract

Background: Estimating energy expenditure with indirect calorimetry requires expensive equipment and several
minutes of data collection for each condition of interest. While several methods estimate energy expenditure using
correlation to data from wearable sensors, such as heart rate monitors or accelerometers, their accuracy has not been
evaluated for activity conditions or subjects not included in the correlation process. The goal of our study was to
develop data-driven models to estimate energy expenditure at intervals of approximately one second and
demonstrate their ability to predict energetic cost for new conditions and subjects. Model inputs were muscle activity
and vertical ground reaction forces, which are measurable by wearable electromyography electrodes and pressure
sensing insoles.

Methods: We developed models that estimated energy expenditure while walking (1) with ankle exoskeleton
assistance and (2) while carrying various loads and walking on inclines. Estimates were made each gait cycle or four
second interval. We evaluated the performance of the models for three use cases. The first estimated energy
expenditure (in Watts) during walking conditions for subjects with some subject specific training data available. The
second estimated all conditions in the dataset for a new subject not included in the training data. The third estimated
new conditions for a new subject.

Results: The mean absolute percent errors in estimated energy expenditure during assisted walking conditions were
4.4%, 8.0%, and 8.1% for the three use cases, respectively. The average errors in energy expenditure estimation during
inclined and loaded walking conditions were 6.1%, 9.7%, and 11.7% for the three use cases. For models not using
subject-specific data, we evaluated the ability to order the magnitude of energy expenditure across conditions. The
average percentage of correctly ordered conditions was 63% for assisted walking and 87% for incline and loaded
walking.

Conclusions: We have determined the accuracy of estimating energy expenditure with data-driven models that rely
on ground reaction forces and muscle activity for three use cases. For experimental use cases where the accuracy of a
data-driven model is sufficient and similar training data is available, standard indirect calorimetry could be replaced.
The models, code, and datasets are provided for reproduction and extension of our results.
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Background
The U.S. has an estimated 20 million people with ambu-
latory disabilities due to age, injury, disease, or congen-
ital conditions [1]. These disabilities often result in less
efficient gait patterns. Energy expenditure, or metabolic
cost, is an important metric for understanding the level
of effort required during motion [2, 3]. Gait retraining
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and assistive devices can reduce this effort and improve
the ability of individuals with disabilities to partici-
pate in activities of daily living, but personalizing assis-
tance requires accurate energy expenditure estimates. For
example, optimizing gait parameters and device assis-
tance with “human-in-the-loop" methods has significantly
reduced energy expenditure for steady state walking
[4–7]. These methods rely on indirect calorimetry to esti-
mate energy expenditure, which is expensive and resource
intensive [8]. Breath-by-breath measurements are noisy
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and not well correlated to instantaneous energy demands
due to the complicated biological processes of mitochon-
drial dynamics in replenishing energy used by muscles
[9–11]. Estimating energy expenditure with breath-by-
breath measurements for any new condition (e.g., a new
assistance profile) requires several minutes to achieve a
steady state estimate.
Methods for energy expenditure estimation span sta-

tistical and data-driven approaches as well as techniques
that model the underlying mechanics and biological pro-
cesses. Initial statistical methods for estimating energy
expenditure fit linear models to indirect calorimetry mea-
surements of subjects moving at different speeds, inclines,
or with additional loads [12–14]. Models based on walk-
ing mechanics accounted for subject specific information
and gave accurate estimations for a narrow range of con-
ditions [15–17]. Biomechanical simulations offer promise
for energy expenditure estimation, but require detailed
information such as joint kinematics, accurate muscu-
loskeletal geometry, and other properties of the subject’s
musculoskeletal system [18–21].
Researchers have also built data-driven models using

wearable sensors or data that could be collected with
wearable sensors, with the aim of portable energy
expenditure estimation. Many different sensors have
been employed, including accelerometers [22–24], inertial
measurement units, [25, 26], heart rate monitors [27–29],
immobile electromyography (EMG) systems [30–32], and
various combinations [33–35]. With the exception of [36],
these studies used linear regression and hand-designed
features to estimate energy expenditure.Many of themod-
els required minutes of data collection before performing
estimation, requiring similar or more time than indirect
calorimetry. While fitting informs the degree to which
features correlate to energy expenditure, it does not eval-
uate the accuracy of the estimated energy expenditure for
activity conditions or subjects not included in the corre-
lation process. Some studies report accuracy with percent
errors of roughly 30% [26] or root mean squared errors of
approximately 1.2 W

kg [35] for walking conditions. Bench-
marking performance for energy expenditure estimation
would enable clinicians and researchers to select mod-
els that meet their required level of accuracy for specific
rehabilitation or research tasks.
The goal of this project was to develop data-driven lin-

ear regression and neural network models to estimate
energy expenditure using short time intervals of data and
evaluate their accuracy in use cases where varying subject-
and condition-specific data is available.We sought to eval-
uate both mean absolute percent error and the ability of
the models to order the magnitude of energy expendi-
ture across conditions. The input features to our models
were electromyography and ground reaction force data.
The models were validated with two datasets: (1) steady

state walking with an ankle exoskeleton and (2) unassisted
walking with a variety of loads and inclines. Although
the datasets we used included only lab-based data, we
sought to define an upper-bound on the performance of
wearable-based estimation methods.

Methods
Datasets
In the first dataset, subjects walked with a unilateral ankle
exoskeleton that provided a variety of ankle assistance
profiles, referenced in this paper as assisted walking [37].
Eight subjects were tested (7men and 1 woman; age = 25.1
±5.1 yr; body mass = 77.5±5.6 kg; leg length = 0.89±0.03
m). Two subjects were rejected as their metabolic rate
was more than two standard deviations from the mean of
the subjects for many of the conditions. The data for the
rejected subjects were not available and not included in
this work. The subjects walked on an instrumented split-
belt treadmill (Bertec, Columbus, OH) at 1.25 m·s−1 for
8 minutes with the exoskeleton on one leg. Ground reac-
tion force, metabolic, and EMG data were collected. The
EMG system (Trigno Wireless System; Delsys, Boston,
MA) targeted the medial and lateral aspects of the soleus,
medial and lateral gastrocnemius, tibialis anterior, vastus
medialis, biceps femoris, and rectus femoris on both legs.
Metabolic metrics were recorded with wireless metabolics
equipment (Oxycon Mobile; CareFusion, San Diego, CA).
The exoskeleton applied 9 different assistance strategies,
with varying amounts of work and torque. The measured
energy expenditure values across these assistance strate-
gies had a minimum of 269 W and maximum of 421 W,
with an average of 343 W. The ground reaction forces and
EMG signals were recorded at 2000 Hz, and all signals
were recorded for the last 3 minutes of each condition
once steady state was reached.
The second dataset investigated changes in energy

expenditure when walking under loaded and incline con-
ditions, referenced in this paper as inclined loaded walk-
ing [31, 38]. We used data from all subjects (9 men
and 4 women; age = 33.7 ±9.0 yr; body mass = 68.8
±11.5 kg) who completed both loaded and incline studies.
Subjects walked on an instrumented split-belt treadmill
(model TMO8I with incline; Bertec Corporation, Colum-
bus, OH). Ground reaction force, metabolic, and EMG
data were collected. The EMG system (DE-2.1; DelSys,
Boston, MA) targeted the soleus, medial gastrocnemius,
tibialis anterior, medial and lateral hamstrings, vastus
medialis, vastus lateralis, and rectus femoris. Metabolic
metrics were recorded (Quark b2; Cosmed, Italy). Each
subject walked under four loading conditions where 0%,
10%, 20%, or 30% of their bodyweight was added with a
weighted vest. For each weight condition, the incline was
set to 0%, 5%, and 10% grades for 5 minutes each. Thus,
12 walking conditions were recorded for each subject. The
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minimum and maximum energy expenditure across these
conditions were 183W and 892W, with an average of 478
W. The forces and EMG signals were recorded at 2000 Hz
for the final 30 seconds of each condition and a metabolic
measurement was collected continuously.
Separate data-driven models were trained on each

dataset due to the different input signals. In summary,
the assisted walking data had 22 time series signals con-
sisting of 3 dimensional ground reactions forces for each
foot and EMG signals from 8 muscles on both legs. The
inclined loaded walking data had 14 time series signals
due to 3 dimensional ground reaction forces for each foot
and EMG signals corresponding to 8 muscles on one leg.
These datasets were selected to test the energy expendi-
ture estimation over a large range of energy expenditure
values as well as a dataset with similar conditions that
would be seen in a potential application of exoskeleton
optimization.

Data processing
The inputs to the model consisted of ground reaction
forces and EMG signals. The force and EMG signals were
filtered following standard biomechanics approaches.
Both sets of signals were passed through a 4th order But-
terworth filter. The force data were passed through a 30
Hz low pass filter to eliminate high-frequency noise. The
EMG signals were filtered with a 30 to 500 Hz bandpass
filter, rectified, filtered with a final 6 Hz low pass filter,
and normalized by the maximum signal for each muscle
during the normal walking trial.
The force and EMG time series data were formatted to

make each sample of input data a fixed size. The first for-
matting method segmented the input signals by gait cycle,
using the ground reaction forces to select data between
right heel strikes. For a single gait cycle of approximately
one second this results in a large and variable number of
features to be fed into the estimation model. This vari-
able length was converted to a fixed size of input data by
dividing each input feature into a fixed number of bins,
which were individually averaged. The number of bins was
experimentally selected to be 30. Splitting data by gait
cycle requires sensors to measure foot force or acceler-
ation [39]. Another formatting method segmented data
by fixed time intervals for use with sets of sensors that
could not split the data by gait cycle. Every four seconds
of data were taken as one input and downsampled to have
an input length of 250.
The ground truth for energy expenditure was computed

using indirect calorimetry. The energy expenditure was
calculated in Watts by passing the recorded oxygen and
carbon dioxide values from each breath into the Brockway
equation [40]. The ground truth energy expenditure value
for each condition was found by averaging over all breaths
during the last two minutes of recorded data, once steady
state motion was achieved.

Model architectures
Linear regression and neural network models estimated
energy expenditure per gait cycle and over fixed time
intervals to enable estimation for activities or sensors that
did not have clearly separable gait cycles. The energy
expenditure estimation models used input signals format-
ted into a vector, x, of length n and output a single value,
y. The length n is 30 times the number of input signals
discretized by gait cycle. The linear regression models
found the ordinary least squares solution for the weight
vector, a, of length n, with a single intercept value b (i.e.,
y = aTx + b). Feature selection and regularization were
not used to simplify the linear regression models.
We also built neural network models, common models

for more complicated prediction tasks that rely on non-
linear transformations to approximate any function. The
neural networks varied in size from 3 to 4 layers and 300
to 1000 neurons per layer. We added dropout and L2 reg-
ularization to all layers to avoid overfitting to training
data [41]. Rectified linear units were used as the activation
functions for all neurons except the final fully connected
layer. We trained the networks with a mean absolute error
loss function. Percent error was computed by scaling the
mean absolute error by the actual energy expenditure for
each condition, giving a measure of relative accuracy. In
order to compare to prior studies we also computed the
root mean squared error (RMSE), normalized by average
subject mass, although the model estimates had units of
Watts.
In order to estimate energy expenditure for activities

without a clear periodic feature, such as segmenting a gait
cycle by heel strike, we considered models that use a fixed
time interval of data. Fixed time interval estimates need to
account for shifts in the time series data by using tempo-
ral models. A recurrent neural network was selected. The
long short-term memory variant can capture long range
dependencies and nonlinear dynamics [42]. The model
tested had two long short-term memory layers of size
64, followed by a fully connected layer. A mean-squared
error loss function was used in training, while evalua-
tion used mean absolute error for consistency. The data
were downsampled by averaging across every 32 sensor
measurements to keep the length of the input data short
enough for the model to perform well in recalling prior
information. A four second interval of data recorded at
2000 Hz was downsampled to an input length of 250.
The longest gait cycle duration from either dataset was
approximately 1.5 seconds. A four second interval was
selected to allow for at least two gait cycles to be repre-
sented so that multiple occurrences of the periodic signals
were present in the input to the model. A longer interval
was avoided to prevent gradient vanishing or explod-
ing issues that can occur when training with long input
sequences [42].
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Evaluating model performance
Three common use cases evaluated model performance:
“novel condition”, “novel subject”, and “both-novel”. The
novel condition use case simulated having some subject-
specific training data available, as well as data from other
subjects, and testing new conditions. Random conditions
were removed (held out) from the training data, and
treated as a test set to evaluate performance. These held
out conditions were not necessarily the same conditions
across all subjects. This use case is similar to research
or clinical tests when the same subject repeats multiple
experiments, making subject-specific data available from
those prior experiments. The novel subject use case held
out one entire subject to estimate all conditions for this
new individual. This is often seen in clinical or research
work when a new subject performs a standard set of
activities that prior subjects have completed. A variant of
the novel subject use case, “subject vertical force”, relied
only on the vertical ground reaction forces and EMG to
emulate the signals that could be recorded with wearable
pressure insoles and EMG electrodes. Another novel sub-
ject variant, “raw subject”, used all signals but without
any filtering other than rectifying the EMG signals. The
both-novel use case held out one subject and the same
conditions across all subjects. The both-novel use case
represents an ideal case where a model generalizes energy
expenditure estimation for a new subject completing a
new task, neither of which are available in the training
data. Training data for similar tasks are included.
A portion of the dataset, the validation set, was removed

from the training data to tune the parameters of the neu-
ral network models. The novel condition use case held out
approximately 10% of the total conditions from any sub-
jects. The novel subject use case held out three subjects
from the inclined loaded data and two subjects from the
assisted data. The both-novel use case held out two com-
plete subjects and two conditions across all subjects. The
parameter values with the best performance on the vali-
dation set were selected and the validation set was placed
back into the training set, due to the small number of
subjects available.
The averaged model performance was measured using

cross-validation. The entire dataset was divided into a
number of sections equal to the number of subjects. Each
section was iteratively treated as the test set, with the
remaining sections combined to become the training set.
The estimation accuracy was averaged across all test sets.
Each test set for the novel condition use case consisted of
roughly 10% of the total conditions from any subjects. The
novel subject use case treated each subject as an individ-
ual test set. The both-novel use case treated each subject
and two random conditions removed from all subjects as
one test set; only these two conditions removed from the
training data were estimated for the subject in the test set.

For a task such as exoskeleton optimization, the energy
expenditure model is required to determine which assis-
tance conditions perform the best in order to direct the
optimization process towards the best performing assis-
tance parameters. Thus, we evaluated how the models
performed in ordering the magnitude of energy expendi-
ture. Confusion matrices were used to visualize the dif-
ference in ordering the magnitude of energy expenditure
across conditions for the model estimates and experimen-
tal measurements. The ground truth energy expenditure
value of all conditions was ordered by increasing value
along the vertical axis. The horizontal axis displayed the
ordering estimated by the neural network models. The
value of each grid square was normalized by the total
number of subjects, thus a value of 1 corresponds to a per-
fect match between the measured and estimated ordering
for that condition.
When ordering conditions that are close in energy

expenditure value, as occurred frequently in the assisted
dataset, switching their order does not constitute a mean-
ingful error. In this case, it is preferale to consider the
conditions to be equal for ordering purposes. A pairwise
comparison between all estimated energy expenditure val-
ues for a single subject evaluated the ordering accuracy.
The estimate for the first condition in each pair was
determined to be one of three outcomes: greater than,
within, or less than a threshold from the estimate of the
second condition. This was repeated for the actual mea-
sured energy expenditure values. A percent ordering was
determined from how many of the estimated outcomes
matched the actual outcomes. The threshold level was
chosen to be 4.2%, which is the mean error of estima-
tion techniques that have been used in human-in-the-loop
optimization of exoskeleton assistance [4, 7] using two
minutes rather than the standard six minutes of indirect
calorimetry data.

Results
Data-driven models estimated energy expenditure during
assisted walking and inclined loaded walking. Visualiza-
tions of the estimates for subjects with the lowest, aver-
age, and highest errors help illustrate the performance
of the models (Fig. 1). These estimates occurred per gait
cycle and estimated all conditions for a new subject not
included in the training data.
The neural network models that estimated energy

expenditure per gait cycle for a novel assisted walking con-
dition performed best with an error rate of 4.4% (0.24
RMSE). The error rate increased to approximately 8% (0.4
RMSE) when the subject or both the subject and con-
dition were novel (Table 1). The linear regression mod-
els performed similarly to the neural network models.
The average errors for the neural network model esti-
mates during inclined loaded walking were worse than
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Fig. 1 a Estimation for best subject during inclined loaded walking. b Estimation for best subject during assisted walking. c Estimation for average
subject during inclined loaded walking. d Estimation for average subject during assisted walking. e Estimation for worst subject during inclined
loaded walking. f Estimation for worst subject during assisted walking. A visual comparison of neural network model estimates and measured
energy expenditure values for the best subject with lowest error, average subject with representative error, and worst subject with highest error
when estimating all conditions in the dataset for a new subject

assisted walking in all use cases (Table 2). The linear
regression models performed only slightly worse, with
an increase in the percent error between 0.6% and 2.4%
compared to the neural network models. The R2 values
for the linear regression models in all use cases dur-
ing assisted and inclined loaded walking were greater
than or equal to 0.96 when fitting training data. The

recurrent neural network that used a fixed time inter-
val of input data performed similarly to the per gait
cycle model, with an average error of 8.9% and 0.4
RMSE during assisted walking. The recurrent neural
network model was only used on the assisted dataset
due to the significant computation required to train the
models.
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A recurrent neural network using a fixed time interval of
input data had an average error of 8.9% and MAE of 0.52
W
kg when estimating energy expenditure during all assisted
walking conditions for a new subject. The recurrent neu-
ral network resulted in a 19.5% increase inMAE compared
to the neural network estimating all conditions for a new
subject per gait cycle.
The neural network models ordered the energy expen-

diture across all inclined and loaded walking conditions
with a clear diagonal trend (Fig. 2a). The neural network
ordering during assisted walking was less accurate, with
additional errors causing a noisier diagonal trend (Fig. 2b).
The recurrent neural network improved the clarity of the
diagonal trend during assisted walking, but increased the
spread of the outliers (Fig. 2c). Using pairwise compari-
son to evaluate the ordering, the neural network models
achieved an average percentage of correctly ordered con-
ditions of 87% and 61% for inclined loaded and assisted
walking. The recurrent neural network slightly improved
the performance averaging 63% correctly ordering condi-
tions for assisted walking.
Restricting the input signals to EMG and the vertical

ground reaction force increased the error minimally com-
pared to using all input signals when estimating energy
expenditure for new subjects (Table 2). Using all input sig-
nals but not performing any data processing other than
rectifying the EMG signals increased the error for linear
regression by 36% and neural networks by 15% compared
to processed inputs.
Models restricting the inputs to only ground reac-

tion forces performed similarly to including all signals
and barely outperformed models restricting the inputs to
only EMG signals during assisted walking with a neu-
ral network (Table 3). Linear regression achieved sim-
ilar levels of performance. For inclined loaded walk-
ing, models using only ground reaction force as inputs

Table 1 Comparison of linear regression and neural network
energy expenditure estimates made per gait cycle for different
use cases during assisted walking

Model Metric Novel
Conditiona

Novel
Subjectb

Both-Novelc

Linear Regression RMSEd
(
W
kg

)
0.18 0.43 0.41

Error 4.1% 8.4% 8.2%

Neural Network RMSE
(
W
kg

)
0.24 0.40 0.43

Error 4.4% 8.0% 8.1%

aThe novel condition use case randomly selected 10% of the conditions from any
subjects as a test set, this was repeated as many times as there were subjects, with
performance averaged across test sets
bThe novel subject use case removed one subject at a time from the training set to
be the test set, averaging the performance across all subjects
cThe both-novel use case removed one subject at a time as well as two random
conditions across all subjects from the training set. These removed conditions were
estimated for the test set subject, with results averaged across all test sets
dRMSE is the root mean squared error normalized by the average subject mass

significantly outperformedmodels using only EMG inputs
with roughly half the error.

Discussion
The purpose of this project was to validate a method
of estimating energy expenditure per gait cycle or short
interval of data using input signals possible to measure
with wearable sensors. Two representative datasets using
immobile versions of these features were selected to have a
large range of energy expenditure values across conditions
(inclined loaded dataset) and similar conditions to those
encountered during exoskeleton optimization (assisted
dataset). Using immobile sensors rather than wearable
versions offers an upper bound on the model performance
before requiring specific wearable sensors to be selected
and enables the use of such models in clinics or labs.
These models predict with higher accuracy than previous
models and perform well even with unfiltered inputs or
using only ground reaction forces as inputs. The models
are able to capture the relative changes in energy expendi-
ture following the trends of the measured energy expen-
diture across the range of conditions, even for subjects
with average or the worst performance (Fig. 1). The abil-
ity to capture relative changes between conditions enables
the models to order the magnitude of energy expenditure
across multiple conditions.
When estimating energy expenditure for a novel condi-

tion, the RMSE and percent error were approximately half
that of models estimating for a novel subject (Tables 1 and
2). Estimating energy expenditure for novel subjects and
conditions performed similarly to the models for novel
subjects. This indicates the models captured some rela-
tionship between the inputs and energy expenditure in
order to account for the new conditions of a similar type
without a significant increase in error, rather than just fit-
ting a specific set of conditions found in the training data.
The worse performance across all inclined loaded walk-
ing models was likely due to the larger range of energy
expenditure values across conditions than during assisted
walking (Table 2).
The additional trainable weights in neural networks

marginally improved performance over linear regression.
the neural networks used here had additional trainable
weights and the ability to capture nonlinear relationships,
which could offer improved performance when more data
is available, or when there is more heterogeneity in the
conditions presented. For example, the similar perfor-
mance of the neural networks trained on raw or processed
inputs shows promise for handling noisier wearable sen-
sor data with minimal preprocessing. The high R2 values
from fitting linear regression training data indicated that
using EMG and ground reaction forces as inputs with the
binning structure was informative for estimating energy
expenditure.
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Table 2 Comparison of linear regression and neural network energy expenditure estimates made per gait cycle for different use cases
during inclined loaded walking

Model Metric Novel Condition Novel Subject Both-Novel Subject Vertical Forcea Raw Subjectb

Linear Regression RMSEc
(
W
kg

)
0.62 0.94 0.95 0.98 1.39

Error 6.7% 12.1% 13.7% 12.3% 16.5%

Neural Network RMSE
(
W
kg

)
0.56 0.83 0.78 0.86 0.88

Error 6.1% 9.7% 11.7% 10.0% 11.2%

aThe subject vertical force use case was the novel subject use case with inputs restricted to vertical ground reaction forces and EMG signals
bThe raw subject use case was the novel subject use case without any data preprocessing other than rectifying the EMG signals
cRMSE is the root mean squared error normalized by the average subject mass

Several of the results of our testing indicate that our
approach could be suitable for extension to new types
of sensors, including purely wearable sensors. The mini-
mal increase in error when restricting inputs to the ver-
tical ground reaction force and EMG signals indicated
wearable sensors measuring normal force, such as pres-
sure sensing insoles, could be capable of collecting the
most important force information (Table 2). Wearable
pressure sensor insoles were found to have an RMSE
between 6.6% and 17.7% from ground reaction forces dur-
ing activities such as walking, standing, or lifting weights
[43]. The recurrent neural network with fixed time inter-
vals of input data performed slightly worse than the per
gait cycle estimation, but could enable flexibility for use
during activities without a clear periodic structure.
Capturing the general trends in energy expenditure

across conditions is important for distinguishing the order
of effort among conditions for a subject. The large range
of energy expenditure values across inclined loaded condi-
tions could have made ordering simpler than the assisted
conditions. The confusion matrix for the inclined loaded
data had a clear diagonal trend with any errors occur-
ring near the correct ordering (Fig. 2a). The confusion
matrix for the assisted conditions show a less defined diag-
onal trend (Fig. 2b). The recurrent neural network model
ordering during assisted walking improved the clarity of
the diagonal trend, but with outliers further from the
correct conditions (Fig. 2c).
Understanding the computation the neural networks

performs is challenging, but comparing the performance
of models with different input types provides some
insight. Models with the input features restricted to
either ground reaction forces or EMG signals had simi-
lar weights for both sets of input features during assisted
walking (Table 3). Inclined loaded walking models relied
more on the ground reaction forces, as these forces
likely encapsulated information such as subject weight,
incline, and amount of added load. Thus, the impor-
tance of certain features is dependent on the walk-
ing conditions. A wider range of features could enable
more robust performance when generalizing to new
conditions.

Prior work evaluated the accuracy of energy expenditure
estimation of commercial wrist-worn devices that mea-
sured heart rate and accelerations at the wrist [26]. For
walking and running activities, the average relative error
for these devices was approximately 31%. The models
required one minute intervals of data to perform esti-
mation. This estimation task is most similar to our use
case estimating new subjects and new conditions during
inclined and loaded walking, which achieved 13.7% and
11.7% errors for the linear regression and neural network
models. Our estimates occur at approximately one second
intervals. The improved performance relative to the wrist-
worn sensors is likely due to the additional information
gathered by placing sensors on the lower limbs.
Another energy expenditure study used a combination

of wearable and immobile sensors including accelerome-
ters, EMG, skin temperature, heart rate, minute ventila-
tion, and breathing frequency to estimate energy expen-
diture using linear regression [35]. A total of 20 condi-
tions were tested for activities including resting, walking,
running, and cycling. These conditions had an energy
expenditure range of 10.0 W

kg , similar to the 10.3 W
kg

range in the inclined loaded dataset. When estimat-
ing new conditions using all sensors, their RMSE was
1.28 W

kg . The RMSE when estimating new conditions
for the inclined loaded dataset with a linear regres-
sion model was 0.62 W

kg , with similar R2 values for both
models. The smaller RMSE in this study indicates the
gait structure and vertical ground reaction force offer
additional information that can improve accuracy and
show similar correlation to the wearable sensors in the
prior study.

Limitations
These data-driven models could be improved by
fine tuning the features and including more wear-
able sensor measurements. The linear regression
features consisted of input signals individually aver-
aged into a fixed number of bins for each gait cycle.
Using feature selection or hand designing additional
features could improve the performance of linear
regression.
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Fig. 2 a Neural network ordering inclined loaded walking conditions. b Neural network ordering assisted walking conditions. c Recurrent neural
network ordering assisted walking conditions. Visualized differences between the ordering of true, or measured, energy expenditure and the
estimations across all conditions in the dataset for new subjects. The value in each grid square represents the number of estimated conditions
ordered to match the corresponding true energy expenditure value. Perfect ordering results in a diagonal trend

The three directions of ground reaction forces used in
some of the trained models cannot be measured with
wearable sensors, but prior work used force sensing
insoles to estimate the three directions accurately [44].

Using wearable sensors could add noise which would
likely reduce performance. In order to investigate the
efficacy of this method for performance during activities
outside a lab setting, a study using completely wearable
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Table 3 Average error for models with input features of either
ground reaction forces or EMG signals when estimating energy
expenditure during all conditions in the dataset for a new subject

Dataset Model Forcesa EMGb

Assisted Linear Regression 8.7% 9.4%

Neural Network 8.1% 9.2%

Incline-load Linear Regression 12.5% 31.6%

Neural Network 11.5% 23.9%

aThe model’s input features were restricted to only include the ground reaction
forces, excluding the EMG signals
bThe model’s input features were restricted to only include the EMG signals,
excluding the ground reaction forces

sensors to estimate energy expenditure over many differ-
ent conditions and subjects would be necessary.
In order to select hyperparameters for the neural net-

work models, the validation set is typically completely
separated from the training and testing data. As an exam-
ple, in the use case where a new subject and condition
were estimated this would require the removal of approx-
imately 16% of the inclined loaded dataset and 25% of
the assisted dataset. Only two conditions for two subjects
were used in this validation process, approximately 2.6%
of the inclined loaded dataset and 5.6% of the assisted
dataset. Due to the small size of the datasets, we included
the validation set for cross-validation. By averaging the
results from a number of folds equal to the number of sub-
jects we expected the potential impact of incorporating
prior knowledge from less than 6% of the datasets would
be minimal compared to the change in performance by
removing 16 to 25% of the available data.
The similarity between the conditions in the train-

ing set and test set impacts performance. When apply-
ing these models to other datasets, the same level
of performance is expected if the new dataset has a
similar size. A truly generalizable model for energy
expenditure estimation would require significantly more
data across a wider range of conditions and sub-
jects. Hand designed experiments showed that esti-
mating conditions with energy expenditure levels on
the extremes of the dataset were the most diffi-
cult. For example, holding out the two conditions
where the exoskeleton applied the most work resulted
in roughly three times the error compared to hold-
ing out random conditions with a linear regression
model for the both-novel use case. To use these mod-
els in practice, the range of conditions to be tested
should be similar to the conditions in the training
data. In general, these models do not estimate the
absolute energy expenditure as accurately as indirect
calorimetry. For practical use, the trade-off between the
speed and accuracy of the estimates will need to be
considered.

Conclusions
This work benchmarks the performance of models used
to rapidly estimate energy expenditure for use cases com-
mon in clinical and rehabilitation settings. If the perfor-
mance of a model described here meets the requirement
of a particular study and the biomechanical conditions
to be tested are similar to those in the data sets used
for training, researchers could use these models rather
than indirect calorimetry. Researchers could also train
their own models to estimate for new conditions. The
similar accuracy when estimating energy expenditure for
conditions present in the dataset for a new subject and
new conditions for a new subject suggests that the mod-
els learned a relationship between the input features and
the energy expenditure, rather than just fitting conditions
with similar training data. The models were also able
to order the energy expenditure across conditions which
could enable selection of optimal assistance conditions.
Restricting input features to signals possible to measure
with wearable sensors allows for scalable deployment of
the models, but requires validation with completely wear-
able sensors. These models take steps towards generaliz-
able energy expenditure estimation which could be used
in interventions that improve rehabilitation and mobility
beyond a lab setting.
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