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Knee osteoarthritis (OA) is a leading cause of disability 
in older adults, with no effective treatments currently 

available and dissatisfaction rates of nearly 20% in patients 
who undergo joint replacement surgery (1). To facilitate 
the development of treatments, there is a need to make dis-
ease staging more efficient. Several methods currently exist 
for OA staging. Radiographically derived evaluations, par-
ticularly joint space narrowing measurements and the Kell-
gren-Lawrence (KL) scoring system (2) (Fig 1) are some of 
the most common. Evaluations derived from MRI, such 
as cartilage volume, morphology, and T2 mapping, have 
also been shown to provide sensitive measurements of OA 
worsening. The KL scoring system is particularly valuable 
in research, where it is often used to define study cohorts 
and to evaluate how the radiographic manifestation of OA 
relates to clinical outcomes. For example, previous stud-
ies have shown that presurgical KL grade is predictive of 
surgical success (3). However, interclinician agreement and 
intraclinician repeatability are not optimal (4,5). More ac-
curate, consistent diagnosis of OA stage would ensure that 
investigative treatments are evaluated in patients in the se-
verity range intended by the investigators. Furthermore, a 
time- and cost-efficient approach would accelerate clinical 

trials, which are often slowed by their reliance on experts to 
first screen large populations with radiography to identify 
patients with the appropriate level of OA severity to be in-
cluded. In clinical practice, having a consistent, automated 
mechanism for evaluating sequential radiographic exami-
nations of individual patients would enable better tracking 
of their disease progression.

Given the importance of radiographic staging, auto-
mated tools that mitigate human bias and costs are needed. 
Previous studies have developed automated radiographic 
classifiers, ranging from machine learning approaches that 
rely on image information distilled using domain knowl-
edge from computer vision experts (6,7) to deep learning 
approaches (8,9). These studies have been made possible by 
the Osteoarthritis Initiative (OAI), in which thousands of 
knee radiographs have been graded by a radiologist com-
mittee. However, methods that rely on image information 
distilled using domain knowledge from experts have lim-
ited accuracy. Deep learning models have performed bet-
ter, but previous approaches have relied on annotations of 
the joint space (ie, isolating the small portion of the image 
containing the joint space). Manual methods for this are 
time-consuming and potentially noisy, whereas automated 
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Purpose:  To develop an automated model for staging knee osteoarthritis severity from radiographs and to compare its performance to 
that of musculoskeletal radiologists.

Materials and Methods:  Radiographs from the Osteoarthritis Initiative staged by a radiologist committee using the Kellgren-Lawrence 
(KL) system were used. Before using the images as input to a convolutional neural network model, they were standardized and aug-
mented automatically. The model was trained with 32 116 images, tuned with 4074 images, evaluated with a 4090-image test set, 
and compared to two individual radiologists using a 50-image test subset. Saliency maps were generated to reveal features used by the 
model to determine KL grades.

Results:  With committee scores used as ground truth, the model had an average F1 score of 0.70 and an accuracy of 0.71 for the full 
test set. For the 50-image subset, the best individual radiologist had an average F1 score of 0.60 and an accuracy of 0.60; the model 
had an average F1 score of 0.64 and an accuracy of 0.66. Cohen weighted k between the committee and model was 0.86, comparable 
to intraexpert repeatability. Saliency maps identified sites of osteophyte formation as influential to predictions.

Conclusion:  An end-to-end interpretable model that takes full radiographs as input and predicts KL scores with state-of-the-art accuracy, 
performs as well as musculoskeletal radiologists, and does not require manual image preprocessing was developed. Saliency maps sug-
gest the model’s predictions were based on clinically relevant information.
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ion plain film radiographs were taken, and each joint of each 
radiograph was staged using the KL system by two trained 
musculoskeletal radiologists. Disagreements were resolved by 
a third radiologist, and their consensus score was reported. We 
obtained institutional review board approval from our institu-
tion to carry out this investigation with the OAI data.

We used six longitudinal bilateral radiographic images of 
4508 patients, yielding 40 280 single-limb images (ie, 20 140 
total bilateral images) despite missing data for some patients 
at some time points. Reasons for missing data include patients 
withdrawing from the study or dying. Patients were randomly 
split into training (3606 patients, 32 116 single-limb images), 
validation (450 patients, 4074 single-limb images), and test 
(452 patients, 4090 single-limb images) sets. Women (58% of 
patients) had an average age of 60.9 years (age range, 45–79 
years). Men (42% of patients) had an average age of 61.3 years 
(age range, 45–79 years). All images from a specific patient were 
included only in one set.

Individual Radiologist Evaluations
To measure agreement between the OAI committee, model, and 
individual radiologists, KL scores were collected from two mus-
culoskeletal subspecialty radiologists (E.H.G.O. and G.E.G.) for 
50 of the test set images—10 randomly chosen radiographs from 
each KL grade. The radiographs were provided to the radiolo-
gists in the OAI’s original, high-resolution format. Both radi-
ologists were blinded to OAI committee scores and the scores 
of the other radiologist. Both radiologists had several years of 
experience in applying the KL scoring system and had exam-
ined numerous OAI radiographs and their corresponding OAI 
committee KL scores through past research. G.E.G. previously 
served on the Imaging Advisory Board for the OAI. They were 
therefore well calibrated to the OAI committee’s KL scoring ten-
dencies when conducting their own evaluations of this test set.

Model Architecture
A 169-layer convolutional neural network with a dense 
convolutional network architecture (Fig 2) was used to pre-
dict the KL score for each image (11). This architecture has 
shown success in other orthopedic radiograph classification 
tasks, including tasks comparable to KL scoring in which 
only a small portion of each overall image may be relevant 
for determining class assignments (12). The final layer was 
modified to have five outputs, one for each KL class. The 
weights of the network were initialized with weights from a 
model pretrained on ImageNet, a large annotated database 
used to train computer vision models. A softmax nonlin-
earity function (13) was then applied over the five outputs 
to convert them into the probabilities that a given image 
represents each of the five KL scores. The model was trained 
to produce predictions that minimize the cross entropy be-
tween the OAI committee’s scores and its own predicted 
scores (Appendix E1 [supplement]). As part of our hyper-
parameter search, we also evaluated the Inception v3 model 
architecture (14). However, this provided consistently lower 
performance on the validation set and was therefore not 

methods have been found to incorrectly localize the joint on 
some images.

The aim of this study was to develop a fully automated model 
for staging knee OA severity and to compare its performance 
to fellowship-trained musculoskeletal radiologists’ performance. 
Because the model is end-to-end and takes as input the same 
full-sized radiograph as that viewed by the radiologist, compari-
sons with radiologists have immediate relevance. Here we take a 
deep learning approach, training a convolutional neural network 
model. By utilizing data augmentation, we eliminate the need to 
manually annotate images during both the training and applica-
tion of the model. We have made our model publicly available at 
https://simtk.org/projects/oastaging/.

Materials and Methods
We used one set of images to train a neural network model to 
identify radiographic features that were indicative of OA sever-
ity to make accurate KL predictions and then used a different, 
held-out set of images to assess how well the model could as-
sess KL scores for previously unseen images. The held-out set 
of images used to evaluate the model (ie, the test set) was not 
used to train the model. To maximize the model’s ability to 
generalize to new images, each training image was replicated 
into several altered versions to increase the effective diversity 
within our training set. When the model made KL predictions 
on the test set, we assessed which regions of each image were 
most influential for the prediction to determine whether the 
model was “paying attention” to the same radiographic features 
as radiologists.

Dataset
The OAI is a longitudinal observational study of knee OA avail-
able for public access (10). More than 4000 men and women 
were assessed annually for nearly a decade. Bilateral fixed flex-

Abbreviations
CI = confidence interval, KL = Kellgren-Lawrence, OA = osteoar-
thritis, OAI = Osteoarthritis Initiative

Summary
An end-to-end interpretable model that takes full knee radiographs as 
input and assesses osteoarthritis severity with comparable perfor-
mance to individual musculoskeletal radiologists and does not require 
manual image preprocessing was developed.

Key Points
	n Our model’s Kellgren-Lawrence (KL) scoring agrees with a com-

mittee of musculoskeletal radiologists as closely as the best indi-
vidual musculoskeletal radiologists agree with themselves.

	n Our model detects the presence of radiographic osteoarthritis (KL 
 2) as accurately as musculoskeletal radiologists and is freely 
available at https://simtk.org/projects/oastaging/.

	n It is robust to variability in image contrast, joint size, joint loca-
tion in the frame, and limb side; it automatically detects the rel-
evant regions of the image instead of requiring a user to manually 
pick out the joint space for the model, and it can assess both right 
and left limbs without requiring users to first manually mirror all 
left limbs to look like right limbs.

http://radiology-ai.rsna.org
https://simtk.org/projects/oastaging
https://simtk.org/projects/oastaging
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and zoom, pixel size differed between images. The default 
preprocessing for all single-joint images across training, vali-
dation, and test sets involved the procedure detailed on the 
left in Table 1. During training, the default preprocessing was 
used with 20% probability for each image in each epoch (ie, 
each round of training in which a model sees every training 
image once) (Fig 3). To augment the dataset, training images 
were augmented using the procedure detailed on the right in 
Table 1, with 80% probability in each epoch (Fig 3). Aug-
mentation was motivated by the observation that OAI im-
ages vary substantially in image contrast, position of the joint 
space within the image frame, relative zoom, and side (ie, 
right or left limb). By replicating each training set image into 
several altered versions (eg, mirroring an image and changing 

included in final analyses. All modeling and analyses were 
done using the Python programming language, version 3.5. 
Original model architectures were obtained from the Torch-
Vision package available in Python before being modified. 
Models were trained and evaluated using one NVIDIA K80 
GPU (Santa Clara, Calif ).

Data Preprocessing and Augmentation
Each image was split down the middle to produce right and 
left knee images. All images were resampled to 299 3 299 
pixels because our neural network model requires all input 
images to have a consistent size, and 299 3 299 is the higher 
default resolution of the two model architectures we initially 
considered. Because the original images varied in resolution 

Figure 1:  Kellgren-Lawrence grading 
scale. The scale ranges from 0 to 4. A score 
of 0 indicates that there is no evidence of 
osteoarthritis (OA; green); a score of 1 indi-
cates the possibility of joint space narrowing 
(orange) and osteophyte formation (blue); a 
score of 2 indicates definite osteophyte for-
mation and possible joint space narrowing; a 
score of 3 indicates multiple osteophytes, def-
inite joint space narrowing, sclerosis (purple), 
and possibly bone deformity (pink); a score of 
4 indicates end-stage OA, marked by severe 
sclerosis, joint space narrowing (sometimes 
bone-on-bone contact), and large osteo-
phytes (5).

Figure 2:  DenseNet architecture. Deep convolutional neural networks are composed of a sequence of sets of convolutional filters with parameters trained from the data. 
In DenseNet, every pair of layers is connected so that low-level features from the first layers (such as edges and primitive shapes) can be used directly in the fully connected 
layer (ie, linear model) of the network. KL = Kellgren-Lawrence.

http://radiology-ai.rsna.org
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A new random augmentation procedure was performed with 
each epoch and each image. One original image was converted 
into a different augmented image with each epoch, and no two 
images were augmented with the same augmentation parameters 
(Fig 4). To examine the value of our augmentation procedure, an 

its contrast to convert a right knee with high contrast into a 
left knee with lower contrast), we better prepared the model 
to make predictions for new images with different combina-
tions of these parameters than were found in the original, 
nonaugmented training set.

Table 1: Image Preprocessing Procedure

Step Default Preprocessing Procedure Augmentation Preprocessing Procedure

1 Remove an equal number of rows from the top and 
bottom of the image to obtain a square image

Randomly imbalance the number of rows cropped from the top versus bot-
tom of the image during the original cropping such that the final number 
of removed rows remains the same as in the original procedure. The ratio 
of rows removed from the top versus bottom was a uniformly distributed 
random variable ranging from 1:3 to 3:1. A new ratio was selected from this 
distribution for each augmented training image in each epoch.

Random additional cropping to obtain a square subset of the image obtained 
from the above step. The percentage of rows and columns retained was a 
uniformly distributed random variable ranging from 70% to 95% of the 
number of rows and columns obtained from the previous set.

2 Resample with cubic interpolation to obtain a 299 × 
299 pixel image

Resample with cubic interpolation to obtain a 299 3 299 pixel image

3 Center pixel values using the individual image’s 
mean value

Center pixel values using the individual image’s mean value

4 Scale pixel values using the individual image’s stan-
dard deviation

Scale pixel values using the individual image’s standard deviation
Add Gaussian noise with mean 0 and a randomly selected standard deviation 

between 0 and 0.1
5 Rescale such that the largest pixel value was 1 and 

the smallest pixel value was 0
Rescale image such that the largest pixel value was 1 and the smallest pixel 

value was 0
Multiply pixel values by a random number between 0.6 and 2.0, then subtract 

1 from each pixel
Mirror along the vertical axis with a probability of 50%

6 Replicate image into three channels Replicate into three channels
7 Center using ImageNet RGB channel means Center using ImageNet RGB channel means
8 Scale using ImageNet channel standard deviations Scale using ImageNet channel standard deviations

Note.—The default preprocessing procedure followed a deterministic approach, whereas the augmented preprocessing procedure took a 
probabilistic approach so that no two augmented versions of a given image were the same. RGB = red, green, blue.

Figure 3:  Data augmentation illustration. In each epoch, the original image is either preprocessed with the standard procedure (20% probability) or it undergoes the data 
augmentation procedure (80% probability). In the data augmentation, we crop, zoom in, upscale, add noise, flip horizontally, and adjust contrast in a stochastic manner so 
that the generated images follow the distribution of images in the original dataset.

http://radiology-ai.rsna.org
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confusion matrix, calculating performance metrics for each 
simulated confusion matrix, and then calculating the 95% CI 
of the performance metrics. κ evaluates agreement between 
two labeling methods without specifying one as ground truth. 
κ values  0 indicate no agreement, 0.5 denotes moderate 
agreement, and 1.0 denotes perfect agreement. κ accounts for 
the magnitude of disagreement between two evaluators and the 
likelihood that they agree by random chance, whereas F1 only 
considers whether an evaluator is correct.

Model Interpretation
Saliency maps were used to obtain a qualitative understanding of 
how the trained model arrived at predictions (Fig 5). They were 
produced by calculating the contribution of each pixel to the 
probability that the model assigns to the true KL class. This was 
done by performing backpropagation through the trained model 
from the single probability output value assigned to the true KL 
class back to the pixels of the image that produced that probability.

additional model was trained without the use of augmentation 
and assessed with the same test set as the model that was trained 
with augmentation.

Performance Evaluation and Comparison with Radiologist
We used three metrics for evaluation: accuracy, F1 score, and 
Cohen weighted κ. Although intuitive, accuracy is misleading 
for this dataset because there is an unequal number of images 
representing each KL score. We used the F1 score and κ (15) 
because both are robust to imbalance in the number of images 
with each KL grade and both have been used in other studies 
on KL scoring, enabling comparison. The F1 score is a single 
metric that combines precision and recall and has a range of 
0–1, where 1 denotes perfect agreement. For multiclass clas-
sification, we compute F1 scores for each class separately and 
average the results. F1 score confidence intervals (CIs) were 
obtained by bootstrapping 10 000 simulated test set confusion 
matrices from either our model’s or other publications’ test set 

Figure 4:  Example of data augmentation. Original image is shown in top left corner (marked with *). Contrast, zoom, and position of joint 
were randomly varied, and the image was randomly mirrored. The augmented data were used to improve the model’s ability to generalize 
to new images.

http://radiology-ai.rsna.org
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Results
With the committee scores used as ground truth, the mod-
el’s predictions had a simple average F1 score of 0.70 and an 
accuracy of 0.71. The model converged after six epochs of 
training, requiring 18 hours on our system. When we trained 
a model using only the default preprocessing procedure and 
did not use augmentation, it achieved a simple average F1 
score of 0.66 and an accuracy of 0.68. For comparison, the 
best-performing model in previous literature reported a class-
weighted average F1 score of 0.59 and an accuracy of 0.60 
(8). Calculating a simple average F1 score from their single-
class data yields 0.61.

For the 50-image test subset that was evaluated by E.H.G.O. 
and G.E.G., the best average F1 score and overall accuracy be-
tween them came from E.H.G.O. and were both 0.60. The 
model had an average F1 score of 0.64 and an overall accuracy 
of 0.66 for this test subset. The model’s F1 scores for individual 
KL scores exceeded those of E.H.G.O. for KL of 0, 2, 3, and 4, 
whereas E.H.G.O. had higher F1 scores for KL of 1 (Table 2). 
Because the subset contains an equal number of images from 
each KL class, these results can be directly compared with the 
weighted F1 scores reported in Antony et al (8).

Norman et al merged the KL of 0 and KL of 1 classes based 
on the fact that both represent an absence of OA (16). When we 
merged the KL of 0 and KL of 1 predictions for our model, it had 
a mean F1 score of 0.80 (95% CI: 0.782, 0.814). For compari-
son, calculating the mean F1 score from their confusion matrix 
yielded a mean F1 score of 0.768 (95% CI: 0.753, 0.782). Their 
primary performance metrics were sensitivity and specificity. Av-
eraging across the four KL classes, our model’s mean sensitivity 
was 0.799 (95% CI: 0.783, 0.816) and its mean specificity was 
0.917 (95% CI: 0.911, 0.922). These are comparable with their 
model’s mean sensitivity of 0.772 (95% CI: 0.757, 0.787) and 
mean specificity of 0.915 (95% CI: 0.911, 0.920). However, our 
F1 score is significantly higher. Our model’s confusion matrix is 
presented in Table 3. See also Tables E1–E6 (supplement).

The KL of 2 score has special importance because it is often 
used as the threshold for determining OA incidence when using 
the KL system for cohort selection. To assess the ability of the 
model to determine incidence of OA, we combined the 0 and 1 
KL scores into one class and combined the 2, 3, and 4 KL scores 
into another class. For the 50-image test subset that was evaluated 
by E.H.G.O.  and G.E.G., the best average F1 score and accuracy 
for detecting OA incidence came from E.H.G.O.  and were 0.875 

Table 2: Radiologist’s and Model’s Agreement with OAI Committee

Parameter

Best Radiologist (E.H.G.O.) 
50-Image Subset Model 50-Image Subset Model Full Test Set Antony et al (8)

Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

KL score
  0 0.71 0.50 0.59 0.53 1.00 0.69 0.73 0.87 0.79 0.57 0.92 0.71
  1 0.44 0.40 0.42 0.50 0.20 0.29 0.38 0.27 0.31 0.32 0.14 0.20
  2 0.50 0.70 0.58 0.60 0.60 0.60 0.71 0.67 0.69 0.71 0.46 0.56
  3 0.60 0.60 0.60 0.78 0.70 0.74 0.82 0.81 0.81 0.78 0.73 0.76
  4 0.80 0.80 0.80 1.00 0.80 0.89 0.87 0.86 0.87 0.89 0.73 0.80
Mean 0.61 

(0.47, 
0.75)

0.60 
(0.46, 
0.73)

0.60 
(0.45, 
0.72)

0.68 
(0.53, 
0.83)

0.64 
(0.55, 
0.77)

0.64 
(0.50, 
0.76)

0.70 
(0.69, 
0.72)

0.69 
(0.68, 
0.71)

0.70 
(0.68, 
0.71)

0.61* 0.62* 0.59*

Accuracy 0.6 (30/50) 0.66 (33/50) 0.71 (2890/4090) 0.60

Note.—Precision (Prec), recall, and F1 score for each Kellgren-Lawrence (KL) score and their mean, with 95% confidence interval in pa-
rentheses, across all KL scores. Accuracy calculated using all 50 images in test subset or all 4090 images in full test set. Data in parentheses 
are raw data. OAI = Osteoarthritis Initiative.
* Mean precision, recall, and F1 reported by Antony et al (8) were weighted according to the frequency of each KL score in their sample, 
whereas our mean metrics were simple averages.

Figure 5:  Saliency map algorithm. Contribution of each pixel is derived from the backpropagation process. Variability in the output layer is passed through the network 
and exposes pixels that contributed most to this variability. Changes in the input image in these pixels would affect the predicted score the most. We interpret these pixels as 
the most predictive ones. Here, we represent this intensity mapping with an image transparent for very low values, green for low values, and red for large values. This intensity 
matrix is referred to as a saliency map.

http://radiology-ai.rsna.org
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and 0.840, respectively. Our model had an average F1 score of 
0.912 and an accuracy of 0.90 for this test subset, exceeding both 
individual radiologists. For the full test set, our model had an F1 
score of 0.866 and an accuracy of 0.872 (Table 4).

The model outputs five probabilities for each image, corre-
sponding to the probability that a given image represents each 
of the five KL scores. We identified the test set images that 
E.H.G.O. and G.E.G. incorrectly classified and examined the 
probability that the model assigned the correct KL score for 
these images. The model assigned a smaller average probability 
to the correct KL score for these images (0.46 and 0.56) than 
the average probability it assigned for images that the radiolo-
gists correctly classified (0.71 and 0.64). The individual radi-
ologists’ accuracy when they agreed with the model was higher 
(0.81 and 0.61) than their accuracy when they disagreed with 
the model (0.34 and 0.41).

When assessing agreement with the OAI committee, the best 
k across E.H.G.O. and G.E.G. was 0.86 with the 50-image 
test subset, 0.90 for the model with the 50-image test subset, 
0.86 for the model with the full test set, and 0.83 for Tiulpin 
et al’s model, which has the highest k in previously published 
literature (9) (Table 5). When assessing interrater agreement, the 
k was 0.81 between E.H.G.O. and the model, 0.89 between 
G.E.G.  and the model, 0.79 between E.H.G.O. and G.E.G., 

and 0.65 for the two most agreeing 
raters in Riddle et al (4) (Table 5). 
When assessing intrarater agreement, 
the model is guaranteed to have a k 
of 1.0. Intrarater agreement was not 
assessed for E.H.G.O. or G.E.G., 
but previous work has reported a 
maximum value of 0.85 for OAI ra-
diographs (4) (Table 5). 

Model Interpretation
Saliency maps (Fig 6) showed that 
the regions of the image containing 
the medial and lateral joint margins 
were frequently observed to pro-
vide the highest contributions to 
the model’s predictions. The inter-
condylar tubercles (ie, tibial spines) 
were also observed to provide salient 
features to the model. No systematic 
differences in saliency maps were ob-
served across the KL score spectrum, 
nor were systematic differences ob-
served between correctly and incor-
rectly classified images (Figs E1, E2 
[supplement]).

Discussion
Our model agrees with the OAI 
committee with higher κ than the 
highest reported radiologist intra-
rater κ in literature and has the addi-

tional advantage of a guaranteed intrarater κ of 1.0. These find-
ings suggest that our algorithm approaches the upper bound 
of possible performance of an experienced radiologist. Directly 
comparing predictions of the algorithm with annotations of 
E.H.G.O.  and G.E.G. yielded κ of 0.81 and 0.89, which are 
comparable to the 0.79 κ observed between E.H.G.O. and 
G.E.G. as well as the maximum intrarater κ of 0.85 reported 
in Riddle et al (4). This indicates that our model’s annotation 
pattern might be indistinguishable from a human radiologist’s 
annotations. The model could empower individual radiologists 
to achieve committee-quality evaluation by providing a second 
assessment, thereby reducing the noise in KL scores.

Prior work on this task has reduced the variability in joint 
size and joint location across radiographs by cropping images 
to only include the joint space before using them as input to a 
model (8,9,16). This step has been deemed important because 
features relevant to OA are mainly found within the joint space. 
Human annotation involves manually drawing a box that con-
tains the joint space for each image. Automated methods have 
been attempted with varying success. One study reported per-
fect accuracy using a template-based method (10), but another 
reported low accuracy when implementing it (8). The latter pro-
posed an alternative method using edge-detection features and 

Table 3: Confusion Matrix for Full Test Set

Model’s Predictions

0 1 2 3 4

OAI scores 0 1247 127 65 2 0
1 324 177 146 9 0
2 136 156 744 78 0
3 0 8 91 534 27
4 0 0 0 31 188

Note.—The entry in row r and column c denotes the number of images that the Osteoarthri-
tis Initiative committee labeled as Kellgren-Lawrence (KL) = r and our model labeled as KL 
= c. For example, there are 1247 images that the committee labeled as KL = 0 and the model 
also labeled as KL = 0. OAI = Osteoarthritis Initiative.

Table 4: Radiologist’s and Model’s Agreement with OAI Committee for Deter-
mining OA Incidence

Parameter

Best Radiologist 
(E.H.G.O.) 50-Image 
Subset

Model 50-Image 
Subset Model Full Test Set

F1 score 0.875 0.912 0.866
Precision 0.823 0.963 0.884
Recall 0.933 0.867 0.849
Accuracy* 0.840 (42/50) 0.90 (45/50) 0.872 (3568/4090)

Note.—F1 score, precision, recall, and accuracy for detecting incidence of osteoarthritis (OA) 
(ie, classifying if Kellgren-Lawrence [KL] score  2) for the best individual radiologist and for 
the model. The Osteoarthritis Initiative (OAI) committees’ scores were used as ground truth.
* Data in parentheses are raw data. 

http://radiology-ai.rsna.org
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reported an average joint detection F1 score of 0.94. Norman 
et al reported joint mislocalization in 1.7% of OAI test set im-
ages using a deep learning model (11). Tiulpin et al (9) reported 
joint mislocalization in 1.5% of OAI test set images using the 
algorithm in Tiulpin et al (12) and relied on manual annotation 
for these cases. The need to annotate images introduces the po-
tential for added noise and error, and it requires additional time. 
Development of a region proposal model (13,15) that combines 
automatic joint space identification with KL classification in a 
single model has been evaluated on portions of the OAI dataset 
(16), but this approach requires the initial manual annotation of 
a training set of images. It also potentially makes the model less 
robust to new datasets. Furthermore, by using shared features to 
both localize the joint space and classify OA severity, it becomes 
more difficult to identify the image regions that were used to 
classify OA severity, thereby reducing model interpretability.

We created a model that was more robust to variability in-
stead of reducing the variability of its input via cropping. We 
designed a data augmentation process such that the distribution 
of features of generated images matched the distribution in the 
original dataset. This probabilistic approach, in which samples 
are generated ad hoc following the predefined distribution, in-
creased the diversity present within the training set and led the 
model to learn from several different, modified versions of each 
image over the course of training. Augmentation also enables the 
model to work well on both right and left knees. Other works 
split each bilateral image in half and convert all left legs into right 
legs via mirror imaging with the justification that it alleviates the 
need to learn to detect limb side (9,16). However, if given a new 
image of a single knee, this approach requires manual input to 
first determine whether it is a left knee that needs to be mirrored 
or a right knee that should not be mirrored. Augmentation was 
also observed to improve performance. Training a model with 
identical DenseNet architecture and hyperparameter search, but 
using only the default image preprocessing procedure, revealed 
that our augmentation enhanced the model’s performance be-
yond that of the default preprocessing, increasing the F1 score 
by 0.04, a 6.1% improvement. Other works have relied on a 
multimodel approach, instead of augmentation, to obtain an ac-
curate model (9,16). They use one model to crop the joint space 
and then use an ensemble of other models to classify each image. 
The use of several models increases the computational time and 
resources required relative to ours, which uses a single model for 
the entire analysis.

We provide publicly available software enabling practitioners 
to analyze their radiographs and receive an automated KL score 
within 30 seconds with a single CPU and within 2 seconds on 
a GPU. The data used for training are freely available through 
the OAI website (10). Our data augmentation algorithm can be 
extended to new modes of variability, such as rotations or distor-
tions, and the code can be adapted to other radiology tasks of 
similar structure.

Incorporating the model into research or clinical work-
flows would be unlikely to add substantial time or labor to 
the current radiograph collection pipeline. Although clinical 
decisions regarding joint replacement surgery are usually based 
on pain and not KL score, research suggesting that presurgical 
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KL grade is predictive of surgical success (3) supports the idea 
of using an automated tool like ours to make better-informed 
decisions. Images can be automatically preprocessed using 
the default preprocessing described on the left in Table 1 and 
then classified by the model quickly on a standard computer 
without GPUs. This could begin immediately after an image 
is generated without intermediate human involvement, and 
the prediction could then be made available to the scientist or 
physician reviewing the image. The software that we have made 
publicly available performs both the preprocessing and clas-
sification, making deployment immediately feasible. However, 
additional validation studies to establish the accuracy of our 
model on images outside of the OAI are necessary before the 
model’s KL labels can be used to inform decisions in the clinic 
and in investigations.

Limitations of the model must be noted. First, we compared 
its performance to that of radiologists using only 50 images. 
Although based on a relatively small sample, this comparison 
provided promising results that have not been previously re-
ported, to our knowledge. Second, the images in the OAI da-
taset were collected using a standardized protocol. It remains to 
be seen how the model generalizes to clinical radiographs that 
may not position the knee in the same way. Joint space narrow-
ing, another measure of OA severity derived from radiographs, 
is heavily influenced by joint positioning. KL grading may be 
less dependent on this factor, but this is unknown. Our data 
augmentation procedure enhances the model’s ability to make 
accurate predictions on new, diverse images.

We have developed an end-to-end model that takes a full 
knee radiograph as input and predicts the KL score with 

performance that exceeds other models trained on the OAI 
dataset and interradiologist agreement. The model we present 
here is fully automated and provides insight into its decision-
making process. We made the model available at https://simtk.
org/projects/oastaging/ as a docker container (17) that can be 
run with or without GPU acceleration on Windows, Mac 
OS, and Linux.
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